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Abstract: In this paper, we study locally and globally p-symmetric Kenmotsu manifolds. In both curvature
conditions, it is proved that the manifold is of constant negative curvature - 1 and globally - Weyl projec-
tively symmetric Kenmotsu manifold is an Einstein manifold. Finally, we give an example of 3-dimensional
Kenmotsu manifold.

Keywords: Kenmotsu manifold, Locally ¢-symmetric, Globally ¢-symmetric, Weyl projective curvature
tensor

1 Introduction

Tanno [§] classified connected almost contact metric manifolds whose automorphism groups have the maxi-
mum dimension. For such a manifold M, the sectional curvature of plane sections containing & is a constant,
say ¢, where ¢ is a global vector field (or contravariant vector field or Reeb vector field). If ¢ > 0, M is a
homogeneous Sasakian manifold of constant ¢-sectional curvature. If ¢ = 0, M is the product of a line or
circle with a Kaehler manifold of constant holomorphic curvature. If ¢ < 0, M is a warped product space
R x; C™. In [5], Kenmotsu abstracted the differential geometric properties of the case if ¢ < 0 and also
introduced the notion of a class of almost contact Riemannian manifolds with some special conditions. We
call this type of manifold, a Kenmotsu manifold.

Takahashi [7] introduced the notion of locally p-symmetric Sasakian manifold as a weaker version of
local symmetry of such manifold. In this paper, we study locally ¢-symmetric Kenmotsu manifold, globally
p-symmetric Kenmotsu manifold and globally ¢-Weyl projectively symmetric Kenmotsu manifold. In first
two cases, we have obtained the result that the manifold is of constant negative curvature - 1. In next
condition, it is shown that the manifold is an Einstein manifold with scalar curvature r = n(n — 1).

2 Preliminaries
Let M be an n-dimensional (where n = 2m + 1) almost contact manifold with an almost contact metric

structure (¢, &, 7, g), where  is a (1, 1) tensor field, £ is a Reeb vector field (or contravariant vector field),
1 is a 1-form and ¢ is a compatible Riemannian metric such that

(X)) ==X +n(X)&n(€) = 1,06 = 0,n(X) =0, (2.1)
90X, 9Y) = g(X,Y) = n(X)n(Y), (2.2)
9(X, &) = n(X) (2.3)

for all X, Y € T(M) [1,2]. An almost contact metric manifold (M™, g) is said to be a Kenmotsu manifold
if the conditions

(Vxe)Y = g(¢X,Y){ —n(Y)eX, (2.4)

Vx{=X—n(X)¢ (2.5)

hold in M, where V is the Levi-Civita connection of g [5].
In an n-dimensional (n = 2m + 1) Kenmotsu manifold, the following relations hold [5]

(Vxn)Y =g(X,Y) = n(X)n(Y), (2.6)
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R(X,Y)E = n(X)Y —n(Y)X, (2.7)
S(X,8) = —(n—1)n(X), (2.8)
S(eX,9Y) = S(X,Y) + (n = 1)n(X)n(Y) (2.9)

for any vector fields X, Y on M, where R and S are the Riemannian curvature tensor and the Ricci tensor
respectively.

Definition 2.1. A Kenmotsu manifold (M™, g) is said to be a locally ¢-symmetric manifold if the condition
¢ (VwR)(X,Y)Z) =0 (2.10)
holds for any vector fields X, Y, Z, W orthogonal to &, that is for any horizontal vector fields X,Y, Z, W.
This notion was introduced by Takahashi [7] for Sasakian manifold.

Definition 2.2. An n-dimensional Kenmotsu manifold M is said to be globally p-symmetric if it satisfies
the condition
¢’(VwR)(X,Y)Z) =0 (211)

for arbitrary vector fields X,Y, Z and W on M.

The Weyl projective curvature tensor P of type (1, 3) on a Riemannian manifold (M™, g) is defined by
3]

P(X,Y)Z = R(X,Y)Z —

! 9, 2)X = 5(X, Z)Y] (2.12)

n—
for any X,Y,Z € x(M), the set of vector fields.

Definition 2.3. A Kenmotsu manifold M of dimension n is said to be globally ¢-Weyl projectively sym-
metric if the Weyl projective curvature tensor P satisfies

¢’ (VwP)(X,Y)Z) =0 (2.13)

for all vector fields X,Y, Z, W € x(M).

3 Results and Discussions

Theorem 3.1. A Kenmotsu manifold (M™, g) is locally p-symmetric if and only if
(VwR)(X,Y)Z = g(R(X,Y)Z,W)¢

for any horizontal vector fields X,Y,Z and W.

Proof. Let us consider an n-dimensional Kenmotsu manifold which satisfies the condition (2.10]). Then by
the use of ([2.1)), the relation ([2.10) yields

(VwR)(X,Y)Z + g(VwR)(X,Y)¢, 2)§ = 0. (3.1)
From , we have
(VwR)(X,Y)§ = (Vwn)(X)Y + n(X)VwY — (Vwn)(Y)X —n(Y)VwX. (3:2)

In view of (2.6) and (3.2)), we obtain

(VwR)(X,Y)§ = g(X, W)Y — g(Y, W)X —n(X)n(W)Y
+0(X)VwY + 0¥ )n(W)X —n(Y)Vw X.
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For horizontal vectors X,Y, W, the relation reduces to
(VwR)(X,Y)¢=g(X, W)Y —g(Y,W)X. (3.4)
Using in the relation , we get
(VwR)(X,Y)Z) + g(g(X, W)Y — g(Y, W)X, Z)§ = 0

or,

(VwR)(X,Y)Z - g(R(X,Y)Z,W){ =0

this implies
(VwR)(X,Y)Z =g(R(X,Y)Z, W)¢ (3.5)

for any horizontal vector fields X,Y,Z and W. Next, if the relation (3.5) holds for any vector fields
X,Y,Z, W orthogonal to &, it follows from p& = 0 that (2.10)) holds and hence the manifold is locally
p-symmetric. This completes the proof of the theorem. O

From (3.5)), it also follows that if (Vi R)(X,Y)Z =0, then R(X,Y)Z = 0 since W and £ are non-zero.
Thus, we have a corollary

Corollary 3.2. If an n-dimensional Kenmotsu manifold is locally symmetric, then the manifold is flat.

Again, in corollary 6 of proposition 5 Kenmotsu [5] proved that if a Kenmotsu manifold is locally
symmetric, then it is of constant negative curvature - 1.

Theorem 3.3. Let M be an n-dimensional Kenmotsu manifold. If M is globally @-symmetric, then it is
locally symmetric.

Proof. Let M be an n-dimensional Kenmotsu manifold. Suppose that the condition (2.11]) holds. Then
from (2.1)) and (2.11) we obtain

—(VwR)(X,Y)Z +n((VrR)(X,Y)Z)¢ =0 (3.6)

or,

(VwR)(X,Y)Z + g(Vw R)(X,Y)§, Z2)§ = 0 (3.7)
By the use of equation (3.3) of proposition 5 of [5] as
(VZzR)(X,Y)=g(Z,X)Y —9(Z,Y)X — R(X,Y)Z
in the relation 7 we get
(Vw R)(X,Y)Z + g(X, W)g(Y, 2)§ — g(Y, W)g(X, 2)§ — g(R(X,Y)W), Z)€ = 0. (3-8)
In view of , relation reduces to
(VwR)(X,Y)Z =0. (3.9)
Hence the theorem is proved. O
From Theorem 3.3 and corollary 6 of [5], we can state next theorem

Theorem 3.4. If an n-dimensional Kenmotsu manifold M is globally p-symmetric, then it is of constant
negative curvature - 1.

Theorem 3.5. Let (M™, g) be a Kenmotsu manifold. If M is globally o-Weyl projectively symmetric, then
it is an Einstein manifold with scalar curvature r = n(n — 1).

92



Journal of Nepal Mathematical Society (JNMS), Vol. 1, Issue 1 (2018); R. J. Shah

Proof. Let us consider M is a globally ¢-Weyl projectively symmetric manifold. Then (2.13]) holds. Now,

using , we obtain
—(VwP)(X,Y)Z + (Vi P)(X,Y)Z)§ = 0. (3.10)

Differentiating(|2.12)) covariantly with respect to W, we get
1
(VwP)(X,V)Z = (VwR)(X,Y)Z - ——[(VwS)(V, 2)X - (VwS)(X,Z)Y).  (311)
In view of (3.10) and (3.11), we get

0= ~g((Vw R)X,Y)Z,U) + ——[(TwS)(Y, 2)g(X,1) — (VwS)(X, Z)g(Y,U)

1
n—1

(3.12)
+n((VwR)(X,Y)Z)n(U) [(VwS)(Y, Z)n(X) — (VwS)(X, Z)n(Y)]n(U).

Let {e;},i =1,2,...,n be an orthonormal basis of the tangent space at any point of the manifold. Putting
X =U =e¢;, in (3.12) and summing over i,1 < i < n, we get

0=—-(VwS)(Y,2)+

- ﬁ[(vwsxx 2) — (VwS)(Zn(Y))

—— [n(VwS)(Y, 2) = (VwS)(Y, Z)] + 0((Vw R)(es, Y) Z)n(e:)

or,

0= 0(TwR)(ew, V) Z2)nes) = ——[(VwS)(Y. 2) = (VwS)(Z, (). (313)
Putting Z = ¢ in , we obtain
0=n((VwR)(e;,Y)E)n(ei) — m(VWS)(Y, §) + ﬁ(VWS)(g,E)n(Y). (3.14)
Now, we have
n(VwR)(ei, Y)E)n(e:) = g(VwR)(ei, Y)E, €)glei ). (3.15)

Again, we get

g(VWR)(ela Y)f, 5) = g(VWR<eza Y)ga 6) - g(R(vWem Y)é? 6)
— g(R(ei, VwY )&, §) — g(R(e;, Y)VwE, §)

Since {e;} is an orthonormal basis Vyye; = 0. From (2.7) we have

=n(e)n(VwY) —n(VwY)n(e:)
= 0.

We know that if R is the Riemannian curvature tensor of a Riemannian manifold (M, g) [3, [4, [6], we have
9(R(X,Y)Z,U) = —g(R(Z,U)Y, X).
Thus, g(R(e;, Y)E, &) + g(R(£,€)Y,e;) = 0 and we get
9g(VwR(e;, Y)E §) + g(R(ei, Y)E, VwE) = 0.

Using above relations in (3.15]), we obtain g((Vw R)(e;, Y)&, &)n(e;) = 0 and the equation (3.14) reduces to

(VwS)(Y, &) = (VwS)(&,En(Y) = 0. (3.16)
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Now, we have

(Vw9)(Y,8) = VwS(Y,§) — S(VwY,§) — S(Y,Vw§)
=—(n-DVwn(Y)+ n-n(VwY) = S(Y, W) +n(W)S(Y,§)
=—(n—-1)(Vwn)()-SY,W)—(n—1)n)n(W)
=—(n—1{gWY) —n¥)n(W)} =S¥, W) — (n— L)n(W)n(Y)
=-SY,W)—(n—-1)gW,Y).

So, putting Y = £ in above relation, we get

(VwS)(£,€) = 0.
Using above two relations in (3.16)), we obtain

SW,Y) = (n—1)g(W,Y). (3.17)
Now, taking an orthonormal frame field at any point of the manifold and contracting over W and Y in
B17), we get
r=n(n-—1) (3.18)
where r is the scalar curvature.
In view of (3.17) and (3.18)), the theorem is proved. O

4 Example of 3-dimensional Kenmotsu Manifold

Let us consider 3-dimensional manifold M = {(z,y,2) € R3}, 2 # 0 where (z,y,2) are the standard
coordinates of R3. Let {Ej, Fa, E3} be a linearly independent global frame on M defined by

0 0 0
Fi=z2—FEy=z2—,F3=—2z—.
1 Z(’)x’ 2 Z@y’ 3 232

Let g be a Riemannian metric defined by

Q(EhEQ) - Q(EQ;ES) = Q(ElaES) = 07
9(Ev, Ey) = g(Es, Es) = g(es, F3) = 1.

Let n be a 1-form defined by n(U) = ¢g(U, E3) for any U € x(M), the set of vector fields. Let ¢ be the (1,
1) tensor field defined by
P(E1) = —E3, p(E2) = E1,¢(E3) = 0.

Then, using the linearity of ¢ and g, we have
N(B3) = 1,¢°(U) = U +n(U)Es, g(U, pV) = g(U, V) = n(U)n(V),

for any vector fields U,V € x(M). Thus, for E3 =&, (¢,£,7,9) defines an almost contact metric structure
on M. Let V be the Levi-Civita connection with respect to the Riemannian metric g. Then, by the
definition of Lie bracket, we have

[E1, B3] = E\E5 — E3E,

R(2)-(A)62)

_ 2 82 + LQ_FEX:[
- 0x0z i Zﬁ)z@x ox
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Similarly, we obtain [E4, Es] = 0 and [Es, E3] = Es.
Now, we have Koszul formula

29(VuV, W) =Ug(V.W) +Vg(W,U) = Wyg(U,V)
Using above Koszul formula, we obtain

29(VEg, B3, E1) = E1g(E3, E1) + E3g(Ey, E3) — Evg(Er, E3)
+ 9([E1, Es], Ev) — g([E3, E1], Ev) + g([E4, E1], E3)
= QQ(El,El)

Similarly, we can calculate
QQ(VEIE?”EQ) ZOZ QQ(El,Eg) and ZQ(VElEg,Eg) ZO = 2g(E17E3)

Thus, ¢(Vg, E3, X) = g(Eq, X) for all X € x(M).
Therefore, Vg, B3 = .
Proceeding continuously in this way, we obtain

Vg Es=FE1, Vg FEy =0,V Ey = —E3,
Vg, B3 =Fy, Vg, Ey = —F3, Vg, E =0,
and vEgEl = VE3E2 = VEgES =0.
Now, we get
Vi, Es = Ey = Ey — g(E1, E3)Es,
VE,E3 = Ey = By — g(Es, E3)E3,
and VESEg =0= E3 - g(Eg,Eg)Eg.

For E, = ¢, above results become
Vx§=X—g(X, )¢ = X —n(X)¢.
Thus the second condition for Kenmotsu manifold is satisfied. Again, we have
(Ve p)Ey = VE 9B — oV By = Vi, (-E2) — ¢(—E3) =0

and
9(¢E1, E1)E3 — g(E1, E3)pEy = g(—FE2,E1) =0

Therefore, we get
(Ve @) E1L = g(pE1, E1) — g(Ev, E3)pEr = 0.

Similarly, we can verify other results. Hence we have
(Vx@)V = g(pX,Y)E = n(Y)pX for Fs=¢.

Thus, the first condition (2.4) for Kenmotsu manifold is also satisfied. Satisfying two conditions (2.4) and
(2.5) for Kenmotsu manifold, the manifold under consideration is a 3-dimensional Kenmotsu manifold.
By the definition of Riemannian curvature tensor in terms of V, we have

R(X,Y)Z =VxVyZ —VyVxZ —VxyZ.
Thus, using definition of R, we have

R(Ey, Es)E3 = Vg, Ve, Es — Vg, Vi E3— Vg, g, E3
= VElEQ - VEQEl
=0.
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Similarly, we obtain

R(Ey, E3)E3 = —Eo, R(E, E3)E3 = —Ey, R(E1, E3)Ey = —Ey,
R(Ey, E3)Ey = E3, R(Ey, E3)Ey = 0, R(Ey, Eo)Ey = Es,
R(Eg,Eg)El =0, R(El,Eg)El = Fj3.

From above curvature relations, it follows that ©?((Vi R)(X,Y)Z) = 0. Hence 3-dimensional Kenmotsu
manifold is locally p-symmetric.
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