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Abstract: In this paper, we study locally and globally ϕ-symmetric Kenmotsu manifolds. In both curvature
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1 Introduction

Tanno [8] classified connected almost contact metric manifolds whose automorphism groups have the maxi-
mum dimension. For such a manifold M , the sectional curvature of plane sections containing ξ is a constant,
say c, where ξ is a global vector field (or contravariant vector field or Reeb vector field). If c > 0,M is a
homogeneous Sasakian manifold of constant ϕ-sectional curvature. If c = 0,M is the product of a line or
circle with a Kaehler manifold of constant holomorphic curvature. If c < 0,M is a warped product space
R ×f C

n. In [5], Kenmotsu abstracted the differential geometric properties of the case if c < 0 and also
introduced the notion of a class of almost contact Riemannian manifolds with some special conditions. We
call this type of manifold, a Kenmotsu manifold.

Takahashi [7] introduced the notion of locally ϕ-symmetric Sasakian manifold as a weaker version of
local symmetry of such manifold. In this paper, we study locally ϕ-symmetric Kenmotsu manifold, globally
ϕ-symmetric Kenmotsu manifold and globally ϕ-Weyl projectively symmetric Kenmotsu manifold. In first
two cases, we have obtained the result that the manifold is of constant negative curvature - 1. In next
condition, it is shown that the manifold is an Einstein manifold with scalar curvature r = n(n− 1).

2 Preliminaries

Let M be an n-dimensional (where n = 2m + 1) almost contact manifold with an almost contact metric
structure (ϕ, ξ, η, g), where ϕ is a (1, 1) tensor field, ξ is a Reeb vector field (or contravariant vector field),
η is a 1-form and g is a compatible Riemannian metric such that

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(ϕX) = 0, (2.1)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), (2.2)

g(X, ξ) = η(X) (2.3)

for all X,Y ∈ T (M) [1, 2]. An almost contact metric manifold (Mn, g) is said to be a Kenmotsu manifold
if the conditions

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2.4)

∇Xξ = X − η(X)ξ (2.5)

hold in M , where ∇ is the Levi-Civita connection of g [5].
In an n-dimensional (n = 2m+ 1) Kenmotsu manifold, the following relations hold [5]

(∇Xη)Y = g(X,Y )− η(X)η(Y ), (2.6)
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R(X,Y )ξ = η(X)Y − η(Y )X, (2.7)

S(X, ξ) = −(n− 1)η(X), (2.8)

S(ϕX,ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.9)

for any vector fields X,Y on M , where R and S are the Riemannian curvature tensor and the Ricci tensor
respectively.

Definition 2.1. A Kenmotsu manifold (Mn, g) is said to be a locally ϕ-symmetric manifold if the condition

ϕ2((∇WR)(X,Y )Z) = 0 (2.10)

holds for any vector fields X,Y, Z,W orthogonal to ξ, that is for any horizontal vector fields X,Y, Z,W .

This notion was introduced by Takahashi [7] for Sasakian manifold.

Definition 2.2. An n-dimensional Kenmotsu manifold M is said to be globally ϕ-symmetric if it satisfies
the condition

ϕ2((∇WR)(X,Y )Z) = 0 (2.11)

for arbitrary vector fields X,Y, Z and W on M .

The Weyl projective curvature tensor P of type (1, 3) on a Riemannian manifold (Mn, g) is defined by
[3]

P (X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y,Z)X − S(X,Z)Y ] (2.12)

for any X,Y, Z ∈ χ(M), the set of vector fields.

Definition 2.3. A Kenmotsu manifold M of dimension n is said to be globally ϕ-Weyl projectively sym-
metric if the Weyl projective curvature tensor P satisfies

ϕ2((∇WP )(X,Y )Z) = 0 (2.13)

for all vector fields X,Y, Z,W ∈ χ(M).

3 Results and Discussions

Theorem 3.1. A Kenmotsu manifold (Mn, g) is locally ϕ-symmetric if and only if

(∇WR)(X,Y )Z = g(R(X,Y )Z,W )ξ

for any horizontal vector fields X,Y, Z and W .

Proof. Let us consider an n-dimensional Kenmotsu manifold which satisfies the condition (2.10). Then by
the use of (2.1), the relation (2.10) yields

(∇WR)(X,Y )Z + g((∇WR)(X,Y )ξ, Z)ξ = 0. (3.1)

From (2.7), we have

(∇WR)(X,Y )ξ = (∇W η)(X)Y + η(X)∇WY − (∇W η)(Y )X − η(Y )∇WX. (3.2)

In view of (2.6) and (3.2), we obtain

(∇WR)(X,Y )ξ = g(X,W )Y − g(Y,W )X − η(X)η(W )Y

+ η(X)∇WY + η(Y )η(W )X − η(Y )∇WX.
(3.3)
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For horizontal vectors X,Y,W , the relation (3.3) reduces to

(∇WR)(X,Y )ξ = g(X,W )Y − g(Y,W )X. (3.4)

Using (3.4) in the relation (3.1), we get

(∇WR)(X,Y )Z) + g(g(X,W )Y − g(Y,W )X,Z)ξ = 0

or,

(∇WR)(X,Y )Z − g(R(X,Y )Z,W )ξ = 0

this implies

(∇WR)(X,Y )Z = g(R(X,Y )Z,W )ξ (3.5)

for any horizontal vector fields X,Y, Z and W . Next, if the relation (3.5) holds for any vector fields
X,Y, Z,W orthogonal to ξ, it follows from ϕξ = 0 that (2.10) holds and hence the manifold is locally
ϕ-symmetric. This completes the proof of the theorem.

From (3.5), it also follows that if (∇WR)(X,Y )Z = 0, then R(X,Y )Z = 0 since W and ξ are non-zero.
Thus, we have a corollary

Corollary 3.2. If an n-dimensional Kenmotsu manifold is locally symmetric, then the manifold is flat.

Again, in corollary 6 of proposition 5 Kenmotsu [5] proved that if a Kenmotsu manifold is locally
symmetric, then it is of constant negative curvature - 1.

Theorem 3.3. Let M be an n-dimensional Kenmotsu manifold. If M is globally ϕ-symmetric, then it is
locally symmetric.

Proof. Let M be an n-dimensional Kenmotsu manifold. Suppose that the condition (2.11) holds. Then
from (2.1) and (2.11) we obtain

−(∇WR)(X,Y )Z + η((∇RR)(X,Y )Z)ξ = 0 (3.6)

or,

(∇WR)(X,Y )Z + g((∇WR)(X,Y )ξ, Z)ξ = 0 (3.7)

By the use of equation (3.3) of proposition 5 of [5] as

(∇ZR)(X,Y )ξ = g(Z,X)Y − g(Z, Y )X −R(X,Y )Z

in the relation (3.7), we get

(∇WR)(X,Y )Z + g(X,W )g(Y,Z)ξ − g(Y,W )g(X,Z)ξ − g(R(X,Y )W ), Z)ξ = 0. (3.8)

In view of (2.7), relation (3.8) reduces to

(∇WR)(X,Y )Z = 0. (3.9)

Hence the theorem is proved.

From Theorem 3.3 and corollary 6 of [5], we can state next theorem

Theorem 3.4. If an n-dimensional Kenmotsu manifold M is globally ϕ-symmetric, then it is of constant
negative curvature - 1.

Theorem 3.5. Let (Mn, g) be a Kenmotsu manifold. If M is globally ϕ-Weyl projectively symmetric, then
it is an Einstein manifold with scalar curvature r = n(n− 1).
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Proof. Let us consider M is a globally ϕ-Weyl projectively symmetric manifold. Then (2.13) holds. Now,
using (2.1), we obtain

−(∇WP )(X,Y )Z + η((∇WP )(X,Y )Z)ξ = 0. (3.10)

Differentiating(2.12) covariantly with respect to W , we get

(∇WP )(X,Y )Z = (∇WR)(X,Y )Z − 1

n− 1
[(∇WS)(Y, Z)X − (∇WS)(X,Z)Y )]. (3.11)

In view of (3.10) and (3.11), we get

0 = −g((∇WR)(X,Y )Z,U) +
1

n− 1
[(∇WS)(Y,Z)g(X,U)− (∇WS)(X,Z)g(Y, U)]

+ η((∇WR)(X,Y )Z)η(U)− 1

n− 1
[(∇WS)(Y,Z)η(X)− (∇WS)(X,Z)η(Y )]η(U).

(3.12)

Let {ei}, i = 1, 2, ..., n be an orthonormal basis of the tangent space at any point of the manifold. Putting
X = U = ei, in (3.12) and summing over i, 1 ≤ i ≤ n, we get

0 = −(∇WS)(Y,Z) +
1

n− 1
[n(∇WS)(Y, Z)− (∇WS)(Y,Z)] + η((∇WR)(ei, Y )Z)η(ei)

− 1

n− 1
[(∇WS)(Y,Z)− (∇WS)(Z, ξ)η(Y )]

or,

0 = η((∇WR)(ei, Y )Z)η(ei)−
1

n− 1
[(∇WS)(Y,Z)− (∇WS)(Z, ξ)η(Y )]. (3.13)

Putting Z = ξ in (3.13), we obtain

0 = η((∇WR)(ei, Y )ξ)η(ei)−
1

n− 1
(∇WS)(Y, ξ) +

1

n− 1
(∇WS)(ξ, ξ)η(Y ). (3.14)

Now, we have

η((∇WR)(ei, Y )ξ)η(ei) = g((∇WR)(ei, Y )ξ, ξ)g(ei, ξ). (3.15)

Again, we get

g(∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)

− g(R(ei,∇WY )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ)

Since {ei} is an orthonormal basis ∇W ei = 0. From (2.7) we have

g(R(ei,∇WY )ξ, ξ) = g(η(ei)∇WY − η(∇WY )ei, ξ)

= η(ei)η(∇WY )− η(∇WY )η(ei)

= 0.

We know that if R is the Riemannian curvature tensor of a Riemannian manifold (M, g) [3, 4, 6], we have

g(R(X,Y )Z,U) = −g(R(Z,U)Y,X).

Thus, g(R(ei, Y )ξ, ξ) + g(R(ξ, ξ)Y, ei) = 0 and we get

g(∇WR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0.

Using above relations in (3.15), we obtain g((∇WR)(ei, Y )ξ, ξ)η(ei) = 0 and the equation (3.14) reduces to

(∇WS)(Y, ξ)− (∇WS)(ξ, ξ)η(Y ) = 0. (3.16)
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Now, we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ)

= −(n− 1)∇W η(Y ) + (n− 1)η(∇WY )− S(Y,W ) + η(W )S(Y, ξ)

= −(n− 1)(∇W η)(Y )− S(Y,W )− (n− 1)η(Y )η(W )

= −(n− 1){g(W,Y )− η(Y )η(W )} − S(Y,W )− (n− 1)η(W )η(Y )

= −S(Y,W )− (n− 1)g(W,Y ).

So, putting Y = ξ in above relation, we get

(∇WS)(ξ, ξ) = 0.

Using above two relations in (3.16), we obtain

S(W,Y ) = (n− 1)g(W,Y ). (3.17)

Now, taking an orthonormal frame field at any point of the manifold and contracting over W and Y in
(3.17), we get

r = n(n− 1) (3.18)

where r is the scalar curvature.
In view of (3.17) and (3.18), the theorem is proved.

4 Example of 3-dimensional Kenmotsu Manifold

Let us consider 3-dimensional manifold M = {(x, y, z) ∈ R3}, z 6= 0 where (x, y, z) are the standard
coordinates of R3. Let {E1, E2, E3} be a linearly independent global frame on M defined by

E1 = z
∂

∂x
,E2 = z

∂

∂y
,E3 = −z ∂

∂z
.

Let g be a Riemannian metric defined by

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0,

g(E1, E1) = g(E2, E2) = g(e3, E3) = 1.

Let η be a 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M), the set of vector fields. Let ϕ be the (1,
1) tensor field defined by

ϕ(E1) = −E2, ϕ(E2) = E1, ϕ(E3) = 0.

Then, using the linearity of ϕ and g, we have

η(E3) = 1, ϕ2(U) = −U + η(U)E3, g(ϕU,ϕV ) = g(U, V )− η(U)η(V ),

for any vector fields U, V ∈ χ(M). Thus, for E3 = ξ, (ϕ, ξ, η, g) defines an almost contact metric structure
on M . Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then, by the
definition of Lie bracket, we have

[E1, E3] = E1E3 − E3E1

= z
∂

∂x

(
− z ∂

∂z

)
−

(
− z ∂

∂z

)(
z
∂

∂x

)
= −z2 ∂2

∂x∂z
+ z

(
z
∂2

∂z∂x
+

∂

∂x
× 1

)
= z

∂

∂x
= E1.
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Similarly, we obtain [E1, E2] = 0 and [E2, E3] = E2.
Now, we have Koszul formula

2g(∇UV,W ) = Ug(V,W ) + V g(W,U)−Wg(U, V )

+ g([U, V ],W )− g([V,W ], U) + g([W,U ], V ).

Using above Koszul formula, we obtain

2g(∇E1E3, E1) = E1g(E3, E1) + E3g(E1, E3)− E1g(E1, E3)

+ g([E1, E3], E1)− g([E3, E1], E1) + g([E1, E1], E3)

= 2g(E1, E1).

Similarly, we can calculate

2g(∇E1E3, E2) = 0 = 2g(E1, E2) and 2g(∇E1E3, E3) = 0 = 2g(E1, E3).

Thus, g(∇E1E3, X) = g(E1, X) for all X ∈ χ(M).
Therefore, ∇E1

E3 = E1.
Proceeding continuously in this way, we obtain

∇E1
E3 = E1,∇E

1
E2 = 0,∇E1

E1 = −E3,

∇E2E3 = E2,∇E2E2 = −E3,∇E2E1 = 0,

and ∇E3E1 = ∇E3E2 = ∇E3E3 = 0.

Now, we get

∇E1E3 = E1 = E1 − g(E1, E3)E3,

∇E2E3 = E2 = E2 − g(E2, E3)E3,

and ∇E3E3 = 0 = E3 − g(E3, E3)E3.

For E
3

= ξ, above results become

∇Xξ = X − g(X, ξ)ξ = X − η(X)ξ.

Thus the second condition (2.5) for Kenmotsu manifold is satisfied. Again, we have

(∇E1ϕ)E1 = ∇E1ϕE1 − ϕ∇E1E1 = ∇E1(−E2)− ϕ(−E3) = 0

and
g(ϕE1, E1)E3 − g(E1, E3)ϕE1 = g(−E2, E1) = 0

Therefore, we get
(∇E1

ϕ)E1 = g(ϕE1, E1)− g(E1, E3)ϕE1 = 0.

Similarly, we can verify other results. Hence we have

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX for E3 = ξ.

Thus, the first condition (2.4) for Kenmotsu manifold is also satisfied. Satisfying two conditions (2.4) and
(2.5) for Kenmotsu manifold, the manifold under consideration is a 3-dimensional Kenmotsu manifold.
By the definition of Riemannian curvature tensor in terms of ∇, we have

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Thus, using definition of R, we have

R(E1, E2)E3 = ∇E1
∇E2

E3 −∇E2
∇E1

E3 −∇[E1,E2]E3

= ∇E1
E2 −∇E2

E1

= 0.
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Similarly, we obtain

R(E2, E3)E3 = −E2, R(E1, E3)E3 = −E1, R(E1, E2)E2 = −E1,

R(E2, E3)E2 = E3, R(E1, E3)E2 = 0, R(E1, E2)E1 = E2,

R(E2, E3)E1 = 0, R(E1, E3)E1 = E3.

From above curvature relations, it follows that ϕ2((∇WR)(X,Y )Z) = 0. Hence 3-dimensional Kenmotsu
manifold is locally ϕ-symmetric.
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