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1 Introduction

Let F™ = (M™, L) be an n—dimensional Finsler space on a differentiable manifold M™, equipped with the
fundamental function L(z,y). In 2012, Shukla et al. [§] introduced the transformation of Finsler metric
called Matsumoto change of metric given by

_ L2
L(z,y) = ;— 3

where 8(z,y) = b;(x)y’ is a one-form on M". They obtained the necessary and sufficient condition for this
change of Finsler metric to be projective change.

Prasad et al. [7] introduced an exponential change of Finsler metric given by
L(w,y) = Le’'"
and they dealt with the imbedding class numbers of the tangent Riemannian space of corresponding spaces.

Recently, Prasad and Kumari [6] introduced the 8—change of Finsler space given by

L(z,y) = (L, B), (1.1)

where f is positively homogeneous function of y’ of degree one in L and 3. They also dealt with the
imbedding classes of the tangent Riemannian spaces. We have considered the same S—change given by
the equation and obtained the necessary and sufficient condition under which this change becomes a
projective change. The particular cases when the vector field b; in /3 is special one have been discussed.
The Berwald’s connection coefficients for the f—changed space have been calculated.

2 Preliminaries

Let F™ = (M™, L) be a Finsler space equipped with the fundamental function L(x,y) on the smooth mani-
fold M™. Let 8 = b;(x)y’ be a one-form on the manifold M", then L — f(L, 3) is the f—change of Finsler
metric. If we write L = f(L, 3), where f is any positively homogeneous function of degree one in L and

and F' = (M™, LL then the Finsler space F" is said to be obtained from F™ by f—change. The quantities
corresponding to F " are denoted by putting bar on those quantities.

The fundamental metric tensor g;;, the normalized element of support /; and angular metric tensor h;; of
F™ are given by

1 9%°L? oL 0*L
= = — and hij = Liaylayj = gij -

_Lo o, ;.
2 Qyioyi’ oy’ J

ij
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We shall denote the partial derivative with respect to 2* and y* by 9; and ; respectively and write
Li == 81.[/7 Lij == 818JL7 Lijk = 8Za]akL
Then,
L; =1, L' hij = Lyj.
The geodesic of F™ are given by the system of differential equations

d*z’ i dx
ﬁ+2G (l‘,ds) —0,

where G(x,y) are positively homogeneous of degree two in 3 and are given by

L2

2G" = g (y"0;0,F — 9;F), F 5

(2.1)

where g* are the inverse of g;;. The well known Berwald connection BI' = (G;-k, G;) of a Finsler space is
constructed from the quantity G* appearing in the equation of geodesic and is given by [S]

G = 0;G, i = kGl
The Cartan’s connection CT = (FJ;, G%, Ck,) is constructed from the metric function L by the following

five axioms [§]:

(1) gy =0 (i) gijlr =0 (i) F]Zk = Flij (iv) Fy=Gi (v) C;k = C;ijv

where |, and |, denote h— and v—covariant derivatives with respect to CT. It is clear that the h—covariant
derivative of L with respect to BI' and CT is the same and vanishes identically. Furthermore, the
h—covariant derivatives of L;, L;; with respect to CI" are also zero.

We shall write

2r5 = by + b, 285 = bij; — bj|;- (2.2)
3 The f—change of Finsler Metric
The S—change of Finsler metric is given by
L(z,y) = f(L,B), (3.1)
where f is positively homogeneous function of degree one in L and 8. Homogeneity of f gives
Liv+Bfa= (3.2)

where subscripts ‘1’ and ‘2’ denote the partial derivatives with respect to L and 3 respectively.

Differentiating (3.2]) with respect to L and [ respectively, we get

Lfi1 +Bfi2=0 and Lfis+ Bfar =0.

Hence, we have

Ji1 Jiz _ Jfa

2L I
which gives

fi1 = BPw, fao = LPw, fi2 = —BLw, (3.3)
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where Weierstrass function w is positively homogeneous function of degree —3 in L and . Therefore,
Lwy + Bws + 3w = 0. (3.4)
Again, ws is positively homogeneous of degree - 4 in L and 3, so
Lwa1 + PBwog + 4ws = 0.

Throughout the paper we frequently use the equations (3.2)), (3.3) and (3.4) without quoting them. Also,
we have assumed that f is not linear function of L and § so that w # 0.

We may put
G =G+ D' (3.5)

Then, é; = G’ 4 D} and @;k = G’ + D}, where D} = d;D* and D}y = 3kD§. The tensors D*, D} and
D; . are positively homogeneous in y® of degree two, one and zero respectively. Therefore, we have

Diy* =D} Diy =2D"
To find difference tensor D, we deal with equation [§] Lijji = 0, that means,
Ok Lij — Lijr Gy, — Ly Fij, — Liy Fjj, = 0. (3.6)

Since 9;3 = b;, from l) we have

(a) L; = fiL; + fab,,
(b) Lij = fiLiy+ B*wL;Lj — BLw(L;b; + L;b;) + L2wb;b;,
(c) 0;Li = f10;L; + (B*wL; — BLwb;)0; L + (L*wb; — BLwL;)9;3 + f20;b;,
(d) OLi; = fiOxLij +{B*wLij + f*wiL;L;j — (BLwy + Bw)(L;bj + Ljb;) +
(2Lw + L2w;)bib; YOk L + {—BLwL;j + (2w + BPwo) LiLj — (3.7)

(Lwy + BLw2)(Lib; + Ljb;) + L*wab;b; } Ok +
(B*wL; — BLwb; )0k Li + (B*wL; — BLwhb;)OxLj —
(BLwLj — L*wb;)0kb; — (BLwL; — L*wb;)0kb;,
(e) Lijx = fiLijx + B2w(LiLjx + LijLi, + Ly Lyj) — BLw(b; Ly + b Lix +
brLi;) + (B%wa + 2Bw)(LiLiby, + L;Lgb; + L;Lib;) —
(BLwa + Lw)(bib; Ly, + bjbrL; + bibp L;) + B2wiLiL; Ly + LPwab;b;by.

Since fmk =0in an after using 1' we have
O Lij — Lijr (G}, + Dy) — Loj(Fij + °Djy,) — Lin(Fj, + “Djy) = 0, (3.8)
where Fj, — Fiy = D

Substituting in the equation (3.8)) the values of OxLij, Ly and L;j, from (3.7)(b),(d),(e) and using (3.6),
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we have

—  fi{Lij» D} + Ly Dy, + Liy D}y } + {B*wLij + B*wi LiL; —
(BLw1 + Bw)(Libj + Ljb;) + (2Lw + L?w; )b;b; } LG}, +
{—BLwL;; + (28w + B?w2)L;L; — (Lw + BLws) x
(Libj + Ljb;) + Lwabib; }(rox + sox + b.GT.) + (B*wL; — LBwb;) x
(LirG, + Lr Fjy) + (BwL; — LBwb; ) (Ljr Gy + Ly Fjy) —
(LBwLj — L*wb;) (1, + six + b FJ) —
(LBwL; — L2wh;)(rj + sjx + b Fjy) —
{B?w(L;Lj, + L;Lyi + L.Lij) — LBw(b;Lj, + bjLiy + b.Li;) + (3.9)
(B*wa + 2Bw)(L; Ljb, + L;Lybj + L;jL.b;) —
(LBwa + Lw)(Lyb;b; + Libjb, + L;ib;b,) +
B2wiLiL; L, + L?wsb;bb. } (G, + Dy) —
{B°wL,L; — LBw(L,bj + L;b,) + L*wb,b;}(F}}, + °D},) —
{B°wL,L; — LBw(Lyb; + Liby) + L*wb,b; } (Fjp, + “Dj) =0,
where Oy L = L, G}, O = 1ok + Sox + b,G},, OxL; = Ly G}, + L, F}), and Oxb; = rip + s + b, F).
Contracting with y*, and using the fact that D;kyj = CD;kyj = D} 2], we get
2{f1Lijr + BPw(L;Ljr + LiLy; + L. Lij} —
LBw(b;Ljr +bjLir + byLyj) + (B8°ws + 28w)(L; Ljb, +
L;L;bj + L;Lb;) — (LBwa + Lw)(Lybib; + L;bjb, + L;b;b,) +
B2wiLiL; Ly + L?wabibjb.} D™ + { f1L.; + B*wL, L; — (3.10)
LBw(Lybj + Ljb.) + L*wb,b;}Df + {f1Lir + *wL, L; —
LBw(Lyb; + Lib,) + L*wbyb;} DY + (LAwLj — L*wb;) x
(ri0 + si0) + (LPwL; — Lwai)(rjo + sjo0) + {BLwL;; — (26w + Bng)LZ—Lj +
(Lw + LBws)(Lib; + Ljb;) — L2wabib;} oo = 0,
where '0’ stands for contraction with respect to y?, viz. ror = riry’, roo = rijyiyj.

- 57

Next, we deal with fi‘j = 0, that is 9;L; — Zi,.ég — L, F;; =0, then
o;L; — fi,«(Gg + D7) — fr(FiTj + “Dj;) = 0. (3.11)
Putting the values of 8jfi, L; and L, from in and using equation
Ly; = 0;L; — LiyG; — L Fj; =0,
and rearranging the terms, we get
faby; = {fLir + B?wL; L, + L*wb;b, — LBw(Lib, + Lyb;)} D}
+(LAwL; — LPwb;)(ro; + s0j) + (f1Ly + fabr) DJj,
which after using gives

2forij = {fili + B*wL;L, + L?wb;b, — LBw(L;b, + Lyb;)} D} +
{fiLjr + BPwL;L, + L*wb;b, — LBw(L;b, + L,b;)} DI + (3.12)
(LﬁwLi — LQUJbi)(T‘oj + S()j) + (L,Bij — szbj) X
(roi + 80i) + 2(fiLy + f2br) D
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and

2f23ij = {flLir + ﬁQWLiLT + szbibr — LBW(Lsz + Lrbl)} D; -
{fiLj, + BPwL;L, + L*wb;b, — LBw(L;b, + L.b;)} DI + (3.13)
(LﬁwLi — L2wbi)(7“0j + Soj) — (L,@ij — Lwaj)(mi + SOi)-

Subtracting from and contracting the resulting equation with 3, we obtain
{~fiLj, + LBwL;b, + LAwL,b; — B*wL;L, — L*wb;b,} D" —
%(Lﬁij — L*wb;)roo + faroj = (fiLr + f2b,) Dj. (3.14)
Contracting with 37, we get
2(f1Lr + f2by) D" = faroo. (3.15)
Adding and and contracting the resulting equation with 37, we get
{fiLir + B?wLiLy + L*wbib, — LAw(Lib, 4+ L,b;)} D™ = %(L%bi — LBwLi)roo + fasio- (3.16)

In view of LL; = g;r — L;L,, the equation (3.16)) can be written as

il . fi
fgirD +{( - T

+ f*w)L; — LBwb;} L, D" +
(L*wb; — LAwL;)b, D" = %

(LQWbi — LﬁwLi)roo + f2840- (317)

Contracting (3.17) with b* = g/b;, we get

(L

2
—LﬂwA) LTDT+(%+L2wA) b D" — LewA

roo0 + f250, (3.18)

where A = b? — B—Z and sg = s,0b".
The equations (3.15))) and (3.18) constitute the system of algebraic equations in L,.D" and b.D" whose
solution is given by

. (fifB+ [LRWA) fifaL?
b,D" = 2/ (fr + LPwh) 700 + P + Dol So (3.19)
and
L.D" = __Lhi T —L2f22 50- (3.20)

2f(fr + L3wh) ™ f(fi + L3wA)

Contracting (3.17) by g%/ and putting the values of b, D" and L, D" from (3.19)) and (3.20)) respectively, we
get

Dt o= {M"T _Lf2(f1f2—fLﬁw)s } an
2f(fr + L) " " TfA(h + Lwn) Y
{ LPw follw }bi+ Lfs ;

2(fi + Lwh) ™ T Fi(h + LPwh) AR (3.21)

i
where [* = =.

=~ <

Proposition 3.1. The difference tensor D' = [elel of any B—change of Finsler metric is given by
15.21)).
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4 Projective Change of Finsler Metric

The Finsler space F is said to be projective to Finsler space F™ if every geodesic of F™ is transformed
to a geodesic of F. It is well known that the change L — L is projective if G' = G + P(z,y)y’, where
P(z,y) is a homogeneous scalar function of degree one in y, called projective factor [3]. Thus, from
it follows that L — L is projective iff D? = Py?.

Now, we consider that the f—change L — L = f(L, 3) is projective. Then, from equation (3.21)), we have

Py { Jife — fLBw oo — Lf2(fife — fLBw) So}yi-f—
2f(fr + LPwA) fhilfi + LPwh)
L3w f2L4w } i Lf2
T00 — 89 ¢ b + —=3sp, 4.1
{2(f1 +DwA) T fi(f + LBwd) Ao (“4.1)
Contracting (4.1) with y;(= g;;4’) and using the fact that sjy; = 0 and y;y* = L?, we get

fife — f5L s
2 (fr + LPwl) 7 f(fr + L3wl) ™"

Putting the value of P from (4.2)) in , we get
5w(f17"00 — 2f2L80) yz = L2w(f17"00 — 2f2L80) bz + 2f2 (fl + LBCJA) 86 (43)

Transvecting (4.3) by b;, we get

P:

roo = —2f2 5% where A =b* - —2 #0 (4.4)
T LAY TR '
Substituting the value of roo from (4.4) in (4.2), we get
—13 0
P = —. 4.
fL2w A (45)
Eliminating P and 7o from (4.5)), (4.4) and (4.1]), we get
i i B\ %o

The equations and give the necessary conditions under which the f—change becomes a projective
change. Conversely, if conditions and are satisfied, then putting these conditions in , we
get

—f3 s0

fL3w A’

”:ﬂﬁ%m ie. D'=Py, where P=

Thus F is projective to F".

Theorem 4.1. The B—change of Finsler space is projective if and only if and @ hold.

Let us assume that L is the metric of a Riemannian space, that is, L = a = \/a;;(z)y’y7. Then L = f(a, 3)
which is the metric of any S—changed space. In this case b;; = b;;; where ; j denotes the covariant derivative
with respect to Christoffel symbols constructed from Riemannian metric o. Thus r;; and s;; are functions
of coordinates only, and in view of the Theorem [4.1] it follows that the Riemannian space is projective to

Finsler space obtained from —change (3.1]) iff

B

—2f2 50
_ So =y

To0 =
a?w A

2
i—bi)s—o, where A:bQ——27€O.
e

and s = —( A
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These equations may be written as

(0) o0 (8% —170?) = 20 () s (8~ 1) = (3" — 0?50 (4.7)

The equation (£.7)(b) can be written as
(sibnbi, + shbjbi + sibib) — b (shank + shajn + shajn)
= bk + ks )3} + (i + bys; )0+
(bjsn + bns;j)oL] — b (anks; + anjsk + ajrsn).
Contracting this equation with ¢ = j, we get
(snpbi + sgbp) =0, for n > 2. (4.8)

Transvection of by b", we get b?s;, = 0, which implies that s, = 0 provided b?> # 0. Therefore, we have
sb =0, so =0 and (a) gives roo = 0 as % — b%a? # 0, consequently 7;; = 0, s;; = 0. Hence b;; = 0,
i.e. the pair (o, ) is parallel pair. Conversely, if b;;; = 0 the equation (a) and (b) hold identically.
Thus, we have the following theorem

Theorem 4.2. The Riemannian space with metric « is projective to the Finsler space with («, B)—metric
iff the («, B) is a parallel pair.

5 Particular Cases of One-form f

Let b; be components of a parallel vector field in F™ i.e. b;; = 0. Therefore r;; = s;; = 0. Hence, the

ilj
i

equation 1) gives D* = 0 which implies that ¢ = G', G; = G% and é;k = G Thus, we have the
following theorem

Theorem 5.1. The Berwald connection BI' = (G;k, G;-, 0) is invariant under S—change for parallel vector

field b;.
Let b; be a concurrent vector field in F™ [4, []. Then, we have (i) b;; = —gs; (ii) biC’;k = 0.

Thus, for a concurrent vector field s;; = 0, r;; = —g;; and therefore roo = —L? and equation 1' reduces
to

(fufo — fLBw)L? _ LPw b
2 (fr + L3wA) T 2(f + L3l

D = — (5.1)

If D' = 0, then equation (5.1)) shows that b® and y® are linearly related. That is, there exists a scalar A
such that
b= \y'. (5.2)

Since for a concurrent vector field the contravariant components b are also functions of z* only [4} [,
differentiating (5.2) with respect to 37, we get

(0;N)y' + A% = 0.

Contracting it with respect to ¢ and j and using the fact that A is homogeneous function of degree —1 in
yi7 we get
(n—DA=0 ie. A=0

which is not possible as in that case § vanishes. Hence, we have the following theorem
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Theorem 5.2. If b; are components of a concurrent vector field, then the Berwald connection BT is not
invariant under 58— change.

1,0b; Ob;
Next, suppose that b; is a gradient vector field so that s;; = 5(8 vl Jl) = 0. Then equation (3.21
x x
reduces to
Di (f1f2 — fLBw) rooy’ + L3wrog n (5.3)

C2f(f1 + L3wA) 2(f1 + L3wA)

If rgo # 0 and D? = 0, then we get the same result as given in theorem (5.2)) for gradient vector field b;
but if rog is also zero, then the Berwald connections BT is invariant under S—change. Thus, we have the
following theorem

Theorem 5.3. Ifb; are components of a gradient vector field, then the Berwald connection BT is invariant
Zf oo = 0.

6 Conclusion

Here, I introduced n-dimension Finsler space differentiable on a manifold along with a fundamental function.
With some preliminaries and historical developments, we mainly focused on the S-change of Finsher metric
and projective change of Finsler metric. The difference tensor of any S-change of Finsher metric is derived.
The necessary and sufficient condition of the p-change of a Finsher space to be projective is presented.
Some particular cases of S-change and Berwald connections are discussed.
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