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Abstract: This article deals with the Jeep Problem (also known as Desert Crossing Problem), which reads
as follows: An unlimited supply of fuel is available at one edge of a desert, but there is no source on the
desert itself. A vehicle can carry enough fuel to go a certain distance, and it can built up its own refuelling
stations. What is the minimum amount of fuel the vehicle will require in order to cross the desert? Under
these mild conditions this question is answered since the 1940s. But what is the answer if the caches are
restricted to certain areas or if the fuel consumption does not depend linearly on the distance travelled? To
answer these and similar questions we develop and solve a flexible mixed-integer programming (MIP) model
for the classical problem and enhance it with new further aspects of practical relevance.

Keywords: Jeep problem, Crossing the desert, Logistics, Storage, Continuous location, Mixed-integer
programming

1 Introduction

This article was motivated by the reading of the chapter Desert Crossing Problem in Martin Gardner’s
book My Best Mathematical and Logic Puzzles [7, pp. 12, 54]. We wondered if the described problem
(see abstract) can also be solved with mixed-integer programming techniques. Analytical solutions for the
classical problem are available since the 1940s [1, 5, 14]. If, for instance, the topography requires that the
caches are restricted to certain areas or if it is desired that the fuel consumption is modelled more accurate
than just by a linear relationship, analytical solutions are not, at least not yet available.

For instance the operator of a rescue helicopter in the Himalayas can be faced with those tricky circum-
stances [13, pp. 231ff.], [2, pp. 1286ff.].

In section 2 we provide all sets, parameters and variables that we will need to set up the optimisation
models that solve the outlined and similar problems. In section 3 we built up the basic model to solve the
classical problem and in section 4 we extend and modify the basic model such that it is capable to answer
the other questions. In section 5 we give brief examples of numerical solutions, followed by the concluding
section 6.

2 Parameters, Sets and Variables

The tables 1 and 2 contain the parameters, sets and variables to set up the basic mixed-integer programming
model for the classical problem and for its enhanced versions that incorporate the modelling of forbidden
zones and complex fuel consumption patterns. In forbidden zones it is not possible to open a fuel depot,
for instance due to lake areas, steep mountains or insecure conditions. Amongst others, fuel consumption
can depend on the altitude or the ground conditions.

3 The Basic Model

As we want to minimise the total fuel consumption of the vehicle, our objective is to minimise F . To break
the massive symmetry due to possible but unnecessary depots and moving options in the model we add a
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Table 1: Parameters and sets that are used in the model for the classical problem and its enhanced versions.
Parameters and sets

basic model

V := {0, . . . , n} base and potential depots

T := {0, . . . , τ} set of potential moves between depots

S := {(i, t) : i ∈ V \ {0} ∧ t ∈ T \ {0}} useful abbreviation

d distance to cover

c fuel capacity of the vehicle’s tank

C a constant to break symmetries in the model

forbidden zones model

[ dj , dj ] ⊂ ]0, d[ , j = 1, . . . ,m forbidden zones for depots

complex fuel consumption model

K := {1, . . . , κ} knots of a piecewise constant function s (units fuel per units dis-
tance at current position) and of a piecewise linear function f (in-
tegral of s from 0 to current position) to model position dependent
fuel consumption

xk, k ∈ K knot positions for s and f

f(xk) =
∫ xk
0 s(x) dx, k ∈ K function value of f at knot k

M := maxk∈K f(xk) big-M to model a product of continuous and binary variables

transport and distance variant

B amount of fuel that is available at the base

regularisation term to F , yielding the objective function:

obj: F +
∑

(i,t)∈V×T

t

C · (i+ 1)
· ai,t . (1)

With these additional summands in the objective, the model tends to move the vehicle earlier to depots
with greater indices, such that movements on degenerated segments happen, if at all, at the end of the trip.
To prevent this term from interfering with the original objective F , C has to be chosen large enough.

In sections 3–4.4, we describe the restricted domain D(obj) ⊂ Rν × Zµ for the basic model, its extensions
and variations.

For the sake of convenience we introduce the variables Wi according to

Wi =

i∑
j=1

wj , ∀i ∈ V . (2)

Wi is the distance from the base to depot i. Note that for i = 0 equation (2) is an empty sum and hence
W0 = 0.

The vehicle must reach its goal at a time, such that∑
t∈T

an,t ≥ 1 (3)

must hold. And the vehicle must always be somewhere after it has moved:∑
t∈T

ai,t = 1 , ∀i ∈ V . (4)

The vehicle’s tank has a limited capacity c and δi,t can be taken from a depot (sgn(δi,t) = 1) or fractions
of the fuel in the tank can be put into a depot (sgn(δi,t) = −1):

0 ≤ ft +
∑
i∈V

δi,t ≤ c , ∀t ∈ T . (5)
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Table 2: Variables that are used in the model for the classical problem and its enhanced versions.
Variables

basic model

ft ≥ 0, t ∈ T fuel in tank after move t

wi ≥ 0, i ∈ V \ {0} length of route segment i between depot i− 1 and i

Wi ≥ 0, i ∈ V auxiliary variables: end of segment i

gi,t ∈ {0, 1}, (i, t) ∈ (V \ {0})× T use edge i in step t? (gi,t = 1 =̂ true, gi,t = 0 =̂ false)

ai,t ∈ {0, 1}, (i, t) ∈ V × T at position i after move t? (ai,t = 1 =̂ true, ai,t = 0 =̂ false)

δi,t ∈ [−c, c], (i, t) ∈ V × T drop fuel at depot or refuel at depot (amount)

li,t ≥ 0, (i, t) ∈ (V \ {0})× T fuel in depot after dropping or refuelling

pi,t ≥ 0, (i, t) ∈ (V \ {0})× T product of gi,t and wi (equates to the fuel consumption while using
wi). In the “complex fuel model”, I(wi−1)− I(wi) takes over the
role of wi

F ≥ 0 total fuel consumption

forbidden zones model

ri,j ∈ {0, 1}, i ∈ (V \ {0})× {1, . . . ,m} auxiliary variables to model forbidden zones

complex fuel consumption model

λi,k ∈ [0, 1], (i, k) ∈ V ×K auxiliary variables to model the piecewise linear function f

yi,k ∈ {0, 1}, (i, k) ∈ V ×K \ {κ} auxiliary variables to model the piecewise linear function f

Ii ≥ 0, i ∈ V integral of s from base to depot i

The vehicle either moves between neighbouring depots which is modelled through equations (6) and (7) or
it rests at its goal by equation (8):

a1,t ≥ a0,t−1 , ∀t ∈ T \ {0} (6)

ai−1,t + ai+1,t ≥ ai,t−1 , ∀(i, t) ∈ (V \ {0, n})× (T \ {0}) (7)

an−1,t + an,t ≥ an,t−1 , ∀t ∈ T \ {0}. (8)

To capture the vehicle’s fuel usage, we have to track if the segment wi between depot i − 1 and depot i
was used during move t. For this purpose we use the binary variables gi,t that are subject to the following
constraints for all (i, t) ∈ S:

gi,t ≥
2 · (ai−1,t + ai,t)− 3

4
and gi,t ≥

2 · (ai,t−1 + ai−1,t)− 3

4
. (9)

The right hand side of the left equation is greater than 0 iff segment i was travelled in forward direction in
step t and the right hand side of the right equation is greater than 0 iff segment i was travelled in backward
direction in step t. The vehicle’s fuel usage on arc i in step t is the product pi,t of the arcs length wi and
gi,t. To model this product in our MIP formulation, we apply the standard modelling technique, amongst
others, presented in [3, pp. 83–84] for all (i, t) ∈ S, yielding

pi,t ≤ c · gi,t , pi,t ≤ wi , pi,t ≥ wi − c · (1− gi,t) . (10)

Once we have the products pi,t at hand, the fuel in the tank after step t underlies the “fuel constraints”.
The fuel in the tank after step t equals the fuel in the tank after step t − 1 minus the fuel consumed to
travel to a neighbouring depot plus the fuel exchange between the tank and the respective depot after step
t− 1:

ft = ft−1 −
∑

i∈V \{0}

pi,t +
∑
i∈V

δi,t−1 , ∀t ∈ T \ {0} . (11)

The “depot constraints” that capture the interaction between depot usage and depot level are:

li,t = li,t−1 − δi,t , ∀(i, t) ∈ S . (12)

The depot level after step t is the depot level after step t − 1 minus the fuel exchange between the tank
and the respective depot. Note that the δi,t in equation (12) have the opposite sign as in (11) as filling the
tank corresponds to emptying a depot and vice versa.
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To use depot i in step t, the vehicle has to be at the depot’s location for (i, t) ∈ V × T , what can be
modelled as

δi,t ≤ c · ai,t and δi,t ≥ −c · ai,t . (13)

If the vehicle is at position i after move t, (13) yields δi,t ∈ [−c, c]. Otherwise ai,t = 0 and hence δi,t = 0.

We assume that, at the beginning of the journey, the vehicle rests at the edge of the desert and that its
tank and all depots are empty, i.e.

a0,0 = 0 , f0 = 0 and li,0 = 0 , ∀i ∈ V . (14)

At this point, it is clear, that our model is flexible enough to easily implement other assumptions with
practical relevance. For instance, simply set li,0 to a desired value, to model that depot i is not empty in
the beginning.

Finally it is necessary to require that the crossing really has to be done. That is, the total length of all
path segments wi has to be the total distance d:∑

i∈V \{0}

wi = d . (15)

Remember that pi,t is the fuel consumption when segment i is crossed in step t. For convenience we use
the variable F to track the total fuel usage:

F =
∑

(i,t)∈S

pi,t . (16)

4 Model Extensions and Variations

In this section we come to the announced model extensions and variations, that emphasise the flexibility
of our approach.

4.1 Model extension: Forbidden zones

With the basic model at hand, it is quite simple to incorporate spatial restrictions for depots. For every
(i, j) ∈ (V \ {0})× {1, . . . ,m} just add

Wi − dj ≤ d · ri,j and Wi − dj ≥ −d · (1− ri,j) (17)

to the model. If Wi ≤ dj or Wi ≥ dj , (17) can easily be fulfilled by the right choice for ri,j . On the other

hand, if Wi ∈ [dj , dj ], no ri,j exists such that both parts of (17) hold.

4.2 Model extension: Position dependent fuel consumption

To model position dependent fuel costs, for every i ∈ V , add the following constraints to the model:

Wi =
∑
k∈K

λi,k · xk ,
∑
k∈K

λi,k = 1 ,
∑

k∈K\κ

yi,k = 1 (18)

λi,1 ≤ yi,1 , λi,k ≤ yi,k−1 + yi,k , ∀k ∈ K \ {1, κ} , λi,κ ≤ yi,κ−1 (19)

Ii =
∑
k∈K

λi,k · f(xk) . (20)

This is a standard technique to model piecewise linear functions in MIP models [4]. The idea behind it is to
express argument and function value as convex combinations of interval bounds of the function’s linearity
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regions and of the function values at the interval bounds, respectively. The y-variables “identify” the
relevant linearity region and ensure that at most the two associated neighbouring λ-variables are positive.
For instance, if yi,k = 1, then only λi,k and λi,k+1 can be different from zero and λi,k + λi,k+1 = 1. The
λ-variables are the coefficients for the convex combinations. We need the Ii from equation (20) to complete
the model and the equations in (18) and (19) to make the Ii take on the desired values f(Wi) (see tables
1 and 2). For every (i, t) ∈ S we replace the constraints (10) by

pi,t ≤M · gi,t , pi,t ≤ (Ii − Ii−1) , pi,t ≥ (Ii − Ii−1)−M · (1− gi,t) . (21)

The pi,t variables then take on the value
∫Wi

Wi−1
s(x) dx = Ii − Ii−1 as desired.

4.3 Model variation: Exploration problem

If the vehicle is supposed to return to the base after it has crossed the desert, this can be modelled by
simply adding the constraint a0,τ = 1.

4.4 Model variation: Transport fuel across the desert

A related problem arises if we pose the question how much fuel can be transported across the desert if
there is only a limited amount B of fuel available at the base? To derive a suitable model for this question
from the preceding models, it is sufficient to alter the objective according to maximise ln,τ . Furthermore a
few additional constraints are required, namely F ≤ B and −δn,τ ≤ f(τ).

4.5 Model variation: Maximise distance

To answer the question “How far can the vehicle travel with a given amount of fuel at the base?”, the
objective has to be modified to maximise d, where d now is a variable and no longer a parameter as in the
other models and variants. Additionally it is necessary to limit the available fuel, i.e. F ≤ B.

5 Computational Results

In this section we provide a brief discussion of numerical experiments for the MIP formulation of the classical
problem and its two extensions and also for the three variants presented in this text. All computations
were done on a standard Linux PC with an Intel R© CoreTM i5-3570 CPU @ 3.40 GHz and 16 GB RAM.
To translate the mathematical models into mixed-integer programs expressed in the .lp file format which
can be read by a MIP solver we used Zimpl [12]. As MIP solver we applied Gurobi 7.0.2 [9].

5.1 Computational results for the basic model

Exemplarily, we choose c = 1, d = 1 + 1/3 + 1/5 + 1/7, n = 3 and τ = 15. The optimiser finds an optimal
solution with F ≈ 5.76, while 4 is the optimal solution [14]. The reason for this is, that by the choice of n
and τ , we overly restricted the search space. If we choose n > 3 and τ > 15, the optimal value of 4 with
dumps at wi =

∑i
j=1

1/(2j+1), i = 1, 2, 3, requiring 16 movements between caches is found. We call such a
movement a trip.

5.2 Computational results for the model “Forbidden zones”

Now let us choose [1/14,
1/7+1/10] as a restricted area. In this case the optimal caches are the same as for the

basic model, except the first one at 1/7 is replaced by two caches. One at 2857.×10−5 and one at 1/7 + 1/10.
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The amount of fuel that is necessary is F ≈ 4.257. Stretching the restricted area to [1/14,
1/7 + 1/5 + 1/14]

yields F ≈ 5.629. In the first case 25 trips are needed, while in the latter only 24 are required to achieve
the optimum.

5.3 Computational results for the model “Position dependent fuel consump-
tion”

We choose (xk, f(xk))5k=1 defining the piecewise linear function f as shown in table 3. For n = 4, τ = 30
the minimum fuel amount for the crossing is F ≈ 6.92 and 24 trips are required.

k xk f(xk)

1 0 0

2 1/7 0.5 · x2

3 1/7 + 1/5 0.6 · x3

4 1/7 + 1/5 + 1/3 0.75 · x4

5 1/7 + 1/5 + 1/3 + 1 1.1 · x5

Table 3: Characterisation of the piecewise-linear function f

5.4 Computational results for the “Exploration variant”

Let us choose c = 1, d = 1/2 + 1/4 + 1/6 + 1/8, n = 6 and τ = 40. The optimiser finds an optimal solution

with F = 3 and dumps at wi =
∑i
j=1

1/(2j), i = 1, 2, 3, 4, requiring 20 trips (cf. [14]) after 100 s.

5.5 Computational results for the “Maximise fuel transport variant”

We set n = 5, τ = 20, d = c = 1 and B = 3 and wonder how much of the 3 units fuel can be transported
across the distance? The answer is ln,τ = 0.53. Nine trips (0 → 1 → 0 → 1 → 0 → 1 → 2 → 1 → 2 → 3)
and two caches along the way, located at 1/5 an 1/3, are needed.

5.6 Computational results for the “Maximise distance variant”

A solution which yields the minimum amount of gasoline for a given distance is also a solution which
yields the maximum distance for a given amount, and conversely [14]. From a theoretical perspective it so
happens, that a solution for the latter conditions appears much easier to obtain [14]. This statement only
holds in a very limited sense for the MIP models. We choose n = 7, τ = 30 and c = 1 in both models,
d = 1 + 1/3 + 1/5 + 1/7 in the basic model and B = 4 (which is the optimal fuel consumption in the basic
model) in the ”maximise distance” model. We used Gurobi to solve both models and it turned out that
the maximum distance variant was solved significantly faster (430 s) than the basic model (640 s). As a
second test we used Gurobi’s tune feature with a time limit of 24 hours for the basic model and also for
the maximise distance variant. With the improved parameter settings suggested by the tuner, both models
could be solved in more or less the same period of time (210 s versus 205 s). The four times mentioned in
this subsection are all average times over ten runs with different random seeds.

6 Conclusion

Many readers called attention to the previously published discussions of the problem and hundreds of
letters were received, giving general solutions and interesting sidelights [7], (cf. [1, 5, 6, 10, 11, 14, 15],
and the references therein). With our MIP formulation we add a new facet to the topic. The model is
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flexible enough to be ready for further extensions like direction dependent fuel costs or additional “fix
costs” in terms of fuel consumption for the usage of a depot (landing and launching a helicopter is extra
costly). However some important questions remain unanswered. Do elegant analytical solutions exist for
the presented problems? How large have n and τ to be chosen in the different models? On the other hand
it is also a feature of the models that they can answer questions like “What is the optimum with at most
n depots and τ movements?”. Finally, note that all models discussed in this article are combinable. The
Zimpl files [12] of the problems are made available under [8].
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