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Abstract: In this paper, we propose a family of fourth order method for solving non-linear equations with
multiple roots. The method is based on the arithmetic mean of Weerakoon method and Chebyshev method for
multiple roots. Some numerical examples are provided in support of the theoretical results. The numerical
results obtained by the method for different values of the parameter are compared with some known methods.
The dynamical behaviour of methods is discussed and basins of attraction around the multiple roots for some
polynomial is shown at the end of the work.
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1 Introduction

The following Newton’s method is the well known iterative method for solving non-linear equation f(x) = 0:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

If f has simple zero then the above method converges quadratically. There are numerous methods available
with higher order each one claims to be the better than the other in some or the other aspect. We mention
here two cubically convergent methods, namely Chebyshev’s method

xn+1 = xn −
f(xn)

f ′(xn)
− f(xn)2 · f ′′(xn)

2f ′(xn)3
. (2)

and the method of Weerakoon and Fernand[11] given by:

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(yn)
. (3)

It is known that all the three methods described above are only linearly convergent in case the multiplicity
of roots is more than one. For a known multiplicity m, Liu et al. [6], presented a fourth order method
given by:

yn = xn −m
f(xn)

f ′(xn)
,

wn =

(
f ′(yn)

f ′(xn)

) 1
m−1

,

G = wn +
2m

m− 1
· w2

n,

xn+1 = yn −m
(
G · f(xn)

f ′(xn)

)
. (4)
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In 2010, Sharma et al. [8] presented a fourth order method based on modified Jarrat’s method [5] given
by:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn − a1w1(xn)− a2w2(xn)− a3
w2

2(xn)

w1(xn)
, (5)

where

w1(xn) =
f(xn)

f ′(xn)
, and w2(xn) =

f(xn)

f ′(yn)

and the values of the parameters are given by

a1 =
1

8
m
(
m3 − 4m+ 8

)
,

a2 =
1

4
(−m)(m− 1)(m+ 2)2

(
m

m+ 2

)m

,

a3 =
1

8
m(m+ 2)3

(
m

m+ 2

)2m

.

Similarly, Li et al. [7] also presented the following fourth order method:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn − a1 ·
f(xn)

f ′(yn)
− f(xn)

a2 · f ′(xn) + a3 · f ′(yn)
, (6)

where

a1 = −

(
m
(
m4 + 4m3 − 16m− 16

)) (
m

m+2

)m
2 (m3 − 4m+ 8)

,

a2 = −
(
m3 − 4m+ 8

)2
m (m4 + 4m3 − 4m2 − 16m+ 16) (m2 + 2m− 4)

,

a3 =
m2
(
m3 − 4m+ 8

) (
m+2
m

)m
(m4 + 4m3 − 4m2 − 16m+ 16) (m2 + 2m− 4)

.

In the present paper, we propose a new optimal fourth order iterative method for finding multiple roots
of f(x) = 0. Our method is based upon (2) and (3). The new aspect of our method that we discuss is its
dynamical behavior, which was not done for the methods (4), (5) and (6).

2 Development of Methods and Their Convergence Analysis

To develop our method, we proceed as follows. We first rewrite method (3) by involving the multiplicity
m ≥ 1 as

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(yn)
. (7)
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Again, the method (2) for multiple roots, as proposed by Behl et. al. [2], is given by

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn)

(
(5m+ 2)f ′(xn)− (m+ 2)f ′(yn)

)
4mf ′(xn)2

. (8)

Now, taking the arithmetic mean of (7) and (8), we obtain

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2

[
2f(xn)

f ′(xn) + f ′(yn)
+
f(xn)

(
(5m+ 2)f ′(xn)− (m+ 2)f ′(yn)

)
4mf ′(xn)2

]
. (9)

It can be worked out that the error equation for the method (9) is given by

en+1 =

(
mm(m+ 2)2−m + 8mm+2(m+2)

(m+2)mm+(m+2)mm +m(m(8m− 13)− 2)
)

8m3
en +O(e2n)

so that the method (9) is linearly convergent for multiple zeros. We introduce some parameters to increase
its order of convergence. Precisely, we propose the following method:

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2

[
2a1f(xn)

a2f ′(xn) + f ′(yn)
+
f(xn)

(
a3(5m+ 2)f ′(xn)− (m+ 2)a4f

′(yn)
)

4mf ′(xn)2

]
. (10)

We prove the following:

Theorem 1. Let the function f : D ⊆ R → R for the open interval D has a zero α with multiplicity
m ≥ 1. Let f(x) has sufficient number of smooth derivatives in the interval D and the initial point x0 is
close enough to α. Then the order of convergence of the method (10) is four for the following values of the
parameters:

a1 = −1

8
mm−11(m+ 2)−4m

(
a4m

m(m+ 2)− 2m4(m+ 2)m
)3
,

a2 = mm−5(m+ 2)−2m
(
−a4(m+ 2)mm − (m+ 2)mm5

)
,

a3 =
−a24m2m(m+ 2)2−2m + a4m

m+4(m+ 6)(m+ 2)1−m − 4(m− 2)m7

m5(5m+ 2)
.

Proof. Let, f(x) = 0 has a multiple root α of multiplicity m, then f (i)(α) = 0 for i = 0, 1, 2, · · · ,m − 1

and f (m)(α) 6= 0. Write en = xn − α and dn = yn − α, and cj =
m!

(m+ j)!

f (m+j)(α)

f (m)(α)
. Using Taylor series

expansion of f(xn) about α, we obtain

f(xn) =
f (m)(α)

m!
emn
(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n

)
+O(e5n) (11)

and

f ′(xn) =
f (m)(α)

m!
em−1n

(
m+ (m+ 1)c1en + (m+ 2)c2e

2
n + (m+ 3)c3e

3
n + (m+ 4)c4e

4
n

)
+O(e5n). (12)

Using first equation of (10), we obtain

f ′(yn) =
f (m)(α)

m!
dm−1n

(
m+ (m+ 1)c1dn + (m+ 2)c2d

2
n + (m+ 3)c3d

3
n + (m+ 4)c4d

4
n

)
+O(d5n). (13)
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Now using (11), (12) and (13) in (10), we obtain the error equation of the method (10) as

en+1 = A1en +A2e
2
n +A3e

3
n +A4e

4
n +O(e5n), (14)

where

A1 =
1

2

[
− 2a1
a2m+ (m+ 2)λ

+
a4λ(m+ 2)2 − a3m(5m+ 2)

4m3
+ 2
]
,

A2 =
c1

8m5

[8a1m
3
(
a2m

2 +
(
m2 + 2m− 4

)
λ
)
− a4λ

(
m3 + 4m2 + 8m+ 8

)
(a2m+ (m+ 2)λ)

2

(a2m+ (m+ 2)λ)
2

+ a3(5m+ 2)m2
]
,

A3 =
1

2

[2a1c
2
1

(
a2m

2(m+ 1) +
(
m3 + 3m2 + 2m− 4

)
λ
)

m2 (a2m+ (m+ 2)λ)
2 − 2a1c2

a2m+ (m+ 2)λ

+
c2

2m5

(
a3m

2(5m+ 2)− a4λ
(
m3 + 4m2 + 8m+ 8

) )
+

c21
4m7

(
a4λ

(
m5 + 5m4 + 12m3 + 16m2 + 16m+ 16

)
− a3m3

(
5m2 + 7m+ 2

) )
− 2a1

m4 (a2m+ (m+ 2)λ)
3

(
c21
(
a2m

2(m+ 1) +
(
m3 + 3m2 + 2m− 4

)
λ
)2

− (a2m+ (m+ 2)λ)
(
c2m

2
(
a2m

2(m+ 2) +
(
m3 + 4m2 + 4m− 8

)
λ
)
− 4c21(m− 2)λ

))]
and

A4 =
1

2

[
2a1c1c2

(
a2m

2(m+ 1) + λ(m3 + 3m2 + 2m− 4)
)

m2 (a2m+ λ(m+ 2))
2

− 2a1c1

m4 (a2m+ λ(m+ 2))
3

( (
a2m

2(m+ 1) + λ(m3 + 3m2 + 2m− 4)
)2
c21

− (a2m+ λ(m+ 2))
(
m2c2

(
a2m

2(m+ 2) + λ(m3 + 4m2 + 4m− 8)
)
− 4c21λ(m− 2)

) )
− 2a1c3

(a2m+ λ(m+ 2))
+

1

12m9(m+ 2)

(
(m+ 2)

(
3a3m

4(m+ 1)2(5m+ 2)

− a4λ(3m7 + 18m6 + 47m5 + 68m4 + 96m3 + 136m2 + 112m+ 96)
)
c31

− 3m2(m+ 2)
(
a3m

3(15m2 + 26m+ 8)− a4λ(3m5 + 16m4 + 36m3 + 48m2 + 64m+ 64)
)
c1c2

+ 3m4
(
3a3m

2(5m2 + 12m+ 4)− a4λ(3m4 + 18m3 + 44m2 + 72m+ 48)
)
c3

)
+

2a1

3m6 (a2m+ λ(m+ 2))
3

(
− 3c1

(
a2m

2(m+ 1) + λ(m3 + 3m2 + 2m− 4)
)

×
(
m2c2

(
a2m

2(m+ 2) + λ(m3 + 4m2 + 4m− 8)
)
− 4c21(m− 2)λ

)
+

1

(a2m+ λ(m+ 2))
3c1
(
a2m

2(m+ 1) + λ(m3 + 3m2 + 2m− 4)
)

×
( (
a2m

2(m+ 1) + λ(m3 + 3m2 + 2m− 4)
)2
c21

− (a2m+ λ(m+ 2))
(
c2m

2
(
a2m

2(m+ 2) + λ(m3 + 4m2 + 4m− 8)
)
− 4c21λ(m− 2)

) )
+

(a2m+ λ(m+ 2))

(m+ 2)2

(
4c31λ(m+ 2)2(m4 + 5m3 − 4m2 + 4m− 12)− 12m2λ(m+ 2)2(m2 + 4m− 8)c1c2

+ 3c3m
4
(
a2m

2(m+ 2)2(m+ 3) + λ(m5 + 9m4 + 30m3 + 36m2 − 24m− 48)
) ))]
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with λ =

(
m

m+ 2

)m

. In order to get fourth order method, we must have

A1 = A2 = A3 = 0

solving which, we obtain

a1 = −1

8
mm−11(m+ 2)−4m

(
a4m

m(m+ 2)− 2m4(m+ 2)m
)3
,

a2 = mm−5(m+ 2)−2m
(
−a4(m+ 2)mm − (m+ 2)mm5

)
,

a3 =
−a24m2m(m+ 2)2−2m + a4m

m+4(m+ 6)(m+ 2)1−m − 4(m− 2)m7

m5(5m+ 2)
.

Also, for these values of the parameters, from (14), the error equation of the method (10) is

en+1 =
(2m5(m+ 2)m

(
3c3m

5 + c1(m+ 2)2
(
c21(m(m(m+ 2) + 2)− 2)− 3c2m

3
))

6m9(m+ 2)m+2 − 3a4mm+5(m+ 2)3

−
a4m

m(m+ 2)
(
3c3m

6 + c1(m+ 2)2
(
c21(m(m(m(m+ 2) + 2)− 2) + 12)− 3c2m

4
))

6m9(m+ 2)m+2 − 3a4mm+5(m+ 2)3

)
e4n

+O(e5n)

and the assertion is proved.

Method (10) can be modify in such a way that we can also test its convergence for power mean. Precisely,
we have

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2

[
2a1f(xn)

a2f ′(xn) + f ′(yn)
+
f(xn)

(
a3(5m+ 2)f ′(xn)− (m+ 2)a4f

′(yn)
)

4mf ′(xn)2

]

= xn −
1

2

f(xn)

f ′(xn)

 2a1

a2 + f ′(yn)
f ′(xn)

+
a3(5m+ 2)− (m+ 2)a4

f ′(yn)
f ′(xn)

4m

 .
Now, apply power mean in the second equation, we obtain

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2

f(xn)

f ′(xn)

 2a1

a2 + f ′(yn)
f ′(xn)

+
a3(5m+ 2)− (m+ 2)a4

f ′(yn)
f ′(xn)

4m


= xn −

f(xn)

f ′(xn)

(
Ap +Bp

2

)1/p

, (15)

where,

A =
2b1

b2 + f ′(yn)
f ′(xn)

,

B =
1

4m

(
b3(5m+ 2)− (m+ 2)b4

f ′(yn)

f ′(xn)

)
and b1, b2 and b3 are the new parameters. For different values of p in (15), we obtain different methods
based on different means. In particular,
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For p = 1, arithmetic mean.
For p = −1, harmonic mean.
For p = 1

2 , sqaure mean root.
For p→ 0, geometric mean.

For p = 1, it can be proved that method (15) reduces to (10) and hence b1 = a1, b2 = a2 and b3 = a3.
However, the convergence of the method (15) need to be analyzed for general p.

3 Numerical Examples

In this section, we check the performance of one parameter family of the method (10) with the help of
some numerical examples. We denote the method by M1 for the parameter a4 = −1 and M2 for the

parameter a4 = m

(
m

m+ 2

)2

. The results obtained are then compared with some existing methods. For

this purpose, we take the methods (4), (5) and (6) denoting them by M3, M4 and M5 respectively. Test
functions together with their approximate roots x∗ upto 16 decimal places and multiplicity m is given in
Table 1. Table 2 shows the number of iterations (n) when |f(xn)| < 10−30 and the corresponding absolute

f(x) x∗ m

f1(x) =
(
−x2 + sin2(x) + 1

)2
1.4044916482153412 2

f2(x) =
(
exp

(
−x2

)
+ x2 + x sin(x)− 2

)6
0.9169529326210010 6

f3(x) = (x exp(x) + cos(x))5 −1.2010606007342120 5
f4(x) = (exp(x)− 2)2(cos(x) + 1) 0.6931471805599453 2

f5(x) = (
√
x+ log(x)− 5)

5
8.3094326942315718 5

Table 1: Test functions with their approximate roots and multiplicity

value of the function for the methods Mi, i = 1, 2, 3, 4, 5. From the table, it is clear that the proposed
methods are competitive with other known methods. Here, a(b) represents a× 10−b.

f(x) x0

Methods
M1 M2 M3 M4 M5

n f(xn) n f(xn) n f(xn) n f(xn) n f(xn)

f1

2.5 3 1.97(31) 3 1.97(31) 4 1.10(31) 3 7.88(31) 3 1.10(31)
3.5 4 7.88(31) 4 7.88(31) 4 1.10(31) 4 1.10(31) 4 1.10(31)

f2

1 2 1.28(85) 2 5.59(84) 2 7.67(93) 2 2.41(81) 2 1.13(84)
1.5 2 3.98(41) 2 3.98(41) 2 1.17(38) 2 5.14(41) 2 4.24(41)

f3

-2 2 1.03(37) 2 1.03(37) 3 1.86(51) 2 1.02(37) 2 1.03(37)
1.9 4 4.76(72) 4 4.82(73) 4 3.22(60) 3 1.47(30) 4 1.72(72)

f4

0 3 7.06(30) 3 3.48(31) diverge 3 5.58(30) 3 7.85(31)
1.5 3 0 3 0 3 0 3 1.39(30) 3 0

f5

1 2 3.06(43) 2 5.24(43) 3 1.77(48) 2 3.83(41) 2 8.03(67)
10 2 5.65(73) 2 1.81(71) 2 1.09(31) 2 1.09(31) 2 1.34(68)

Table 2: Numerical results obtained from various methods

4 Dynamical analysis

In this section, we study the dynamical behavior of the methods. In particular, we analyze the fixed points,
critical points, basins of attraction and stability of the methods presented in this paper. For this, we
apply the methods on complex polynomials p(z) with degrees two and three having different multiplicities.
It is well known that the fixed points and the critical points of any method play important role in the
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understanding of the dynamics of the corresponding method. We study the effect of order, degree of the
polynomial and multiplicity on the number of extraneous points. Further, stability of the method is shown
visually with the help of basins of attraction of the attracting fixed points. In Subsection 4.2, we study
and obtain the fixed and critical points of the methods developed in this paper while in 4.3, basins of
attraction of the methods are presented. For more details of the complex dynamics of rational functions
(or operators), one may refer to [1], [4], [3] and references therein.

4.1 Some basics

Let Ĉ = C∪ (∞) denote the extended complex plane. Let p : Ĉ→ Ĉ be a function. A point z0 ∈ Ĉ is called
a fixed point of p if p(z0) = z0. A fixed point z0 of p(z) is called attracting, super-attracting, repelling or
neutral if, respectively, 0 <| p′(z0) |< 1, p′(z0) = 0, | p′(z0) |> 1, or | p′(z0) |= 1. It is noted that z =∞ is
a super-attracting fixed point for any polynomial with degree n ≥ 2 [3].

Orbit of a point z0 ∈ Ĉ of the mapping p(z) is given by

orbit(z0) = {zo, p(z0), p2(z0), ......}

The basin of attraction of an attracting (or super-attracting) fixed point z0 of p(z) is the set of all points
whose orbits converge to z0.

Consider for example the mapping p(z) = z2. It can be checked that 0 and ∞ are super-attracting fixed
points while 1 is a repelling fixed point for p(z). Also, the basins of attraction for 0 and∞ are, respectively
{z :| z |< 1}and {z :| z |> 1}.
Corresponding to the function p(z), define a transform

Mp(z) = z − φp(z),

where φp(z) is such that p(z) = 0 ⇒ φp(z) = 0. When φp(z) = p(z)
p′(z) , then the corresponding transform

Mp(z) is the well known Newton’s transform. Clearly, the roots of p(z) = 0 are the fixed points of Mp(z).
However, there may be fixed points of Mp(z) which need not be the roots of p(z) = 0. Such points are
called extraneous (or strange) fixed points. Consider, for example, p(z) = z2 − 3z + 2 and

Mp(z) = z − z2 − 3z + 2

2z − 3
(z2 − 3z + 3).

Here z = 1, 2 are the roots of p(z) = 0 and therefore fixed points of Mp(z). The points z = 3±i
√
3

2 are not
the roots of p(z) = 0 but are fixed points of Mp(z) and therefore are the extraneous fixed points of Mp(z).

4.2 Fixed and critical points

Let p(z) be a polynomial having multiple zeros defined on Ĉ. We define the operator of the method (10)
as below:

y(z) = z − 2m

m+ 2

p(z)

p′(z)
,

Mi(z) = z − 1

2

[
2a1p(z)

a2p′(z) + p′(y(z)
+
p(z) (a3(5m+ 2)p′(z)− (m+ 2)a4p

′(y(z)))

4mp′(z)2

]
, (1)

where i = 1, 2 and a1, a2 and a3 are as obtained in Theorem (1). We obtain the methods M1(z) and M2(z)

for the value of the parameter a4 = −1 and a4 = m

(
m

m+ 2

)2

respectively. The fixed points of methods

are obtained by Mi(z) = z and critical points are obtained by M ′i(z) = 0, i = 1, 2. For the second degree
and third degree polynomials with different multiplicity the fixed and critical points of the methods are

7
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Polynomial (p(z))

Fixed Points Critical Points

Roots
Number of extraneous points

Roots
Number of free points

M1 M2 M1 M2

(z2 + 1)2
i

8 8
i

8 8−i −i

(z2 + 1)3
i

12 12
i

14 14−i −i

(z3 − 1)2

1

24 24

1

30 30
−0.5− 0.866025i −0.5− 0.866025i
−0.5 + 0.866025i −0.5 + 0.866025i

(z3 − 1)3

1

36 36

1

48 48
−0.5− 0.866025i −0.5− 0.866025i
−0.5 + 0.866025i −0.5 + 0.866025i

Table 3: Fixed and critical points

presented in Table 3:

From the table, it is clear that the roots of the polynomials are always the fixed points as well as the critical
points. The number of extraneous (or strange) fixed points and number of free critical points varies accord-
ing to the polynomials used and the multiplicity of any polynomial. However, for any particular polynomial
with a given multiplicity, both M1 and M2 have same number of fixed as well as critical points. Which shows
that the value of the parameter doesn’t affect the number of extraneous fixed points and free critical points.

The existence of extraneous fixed points of any operator complicate the root finding procedure. As at-
tractive fixed points, they may trap an iteration sequence, giving erroneous results for a root α of the
polynomial p(z). Even as the repulsive or neutral fixed points, however, they may alter the structure of
the basin of attraction for the roots [10]. Therefore, large number of extraneous fixed and critical points
for the higher degree polynomial make the method less stable.

4.3 Basins of attraction

We describe the dynamical behavior of the methods M1 and M2 in terms of their basins of attraction. We
do it for second and third degree polynomials with different multiplicities.

(i) (ii)

(iii) (iv)

Figure 1: Basin of attraction of the method M1(z) for the polynomials: (i) (z2 + 1)2, (ii) (z2 + 1)3,
(iii) (z3 − 1)2 and (iv) (z3 − 1)3.
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(i) (ii)

(iii) (iv)

Figure 2: Basin of attraction of the method M2(z) for the polynomials: (i) (z2 + 1)2, (ii) (z2 + 1)3,
(iii) (z3 − 1)2 and (iv) (z3 − 1)3.

From Figures 1 and 2, it is clear that basins of attraction of both the methods changes with the change of
multiplicities of polynomials. The basins of attraction the methods are more smooth for lower multiplicity
(m = 2) as compared to that of higher one (m = 3). It is due to the fact that number of extraneous fixed
points and free critical points for the higher multiplicity is more than that of the smaller one.

In our work, we use Mathematica 9.0 for all the numerical calculations as well as to obtain the basins of
attraction. We have divided the complex plane into 300× 300 initial points in the domain [−2, 2]× [−2, 2]
of the complex plane and use the software of Varona in [9] to determine the basins of attraction of the roots
of the polynomials. Light color specifies the region where initial points require less iterations to converge
to the particular root. As the color gets darker and darker, it means that the number of iteration increases
to converge the root. Black color is used for the initial points which do not converge to any of the root
within the maximum limit of 40 iterations.
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enthusiastic encouragement and useful critiques for this research work.
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