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1 Introduction

Jacques Sesiano’s studies report that the general methods of constructing of doubly even magic squares
were made by eastern mathematicians before of the eleventh century ([5], pp. 44-88). Nagarjuna, Indian
Buddhist Master who revived the Mahayana, discovered the first non-normal magic square and Narayana
says that the magic squares are part of the progressions and that Siva taught them to Manibhadra, the
magician ([2], p. 51). Nagarjuna’s work is the basic source of Buddhism in China and is the synthesis of the
previous activities of the Lohans, the great followers of Buddha. Here, we present a new general method
which builds, for each order, new types of magic squares hitherto unknown. The ten metric, topological,
symmetry and parity properties that these magic squares have make them very useful in art and security.
Our method, like that of Nagarjuna exposed in his work Kaksaputa, starts from two arithmetic progressions.
Due to this fact, we think that the method is a continuation of the work of the Lohans and we report to
them. We use the definitions and notations of [1].

2 Basic Concepts and Notations Related to the Method

A magic square of order n is a square matrix formed by the numbers 1, 2, 3, · · · , n and such that the sum

of the numbers of each row, each column and each of the two diagonals is equal to cn = n3+n
2 . We call cn of

magic constant. If n = 4k, k positive natural number, the magic square is of type doubly even magic square.

Let n = 4u, u ∈ N∗, In = {1, 2, 3, · · · , n} and cn the magic constant of n order. We define and denote:

a)

Ln =

l1,1 ... l1,n
... ... ...
ln,1 ... ln,n

 = (lu,v)u,v∈In ,

the matrix of n order and of 2× 2 blocks determined by

Ls,r =

(
(n− 2(s− 1))n− 2(r − 1) (2s− 1)n− (2r − 1)

(2s− 1)n + (2r − 1) (n− 2s)n + 2r

)
; s, r ∈ In

2
(1)

b) Hn, matrix of nth order generated from of Ln by exchanging some entries of the two diagonals with
adjacent entries as follows: l1,1 with l1,2, ln,1 with ln,2, l1,n with l1,n−1, ln,n with ln,n−1; l3,3 with l3,4,
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ln−2,3 with ln−2,4, l3,n−2 with l3,n−3, ln−2,n−2 with ln−2,n−3; etc. Formally, Hn is the matrix generated
from of Ln by the swaps (horizontal swaps): l2u−1,2u−1 with l2u−1,2u; ln−(2u−1)+1,2u−1 with ln−(2u−1)+1,2u;
l2u−1,n−(2u−1)+1 with l2u−1,n−(2u−1); ln−(2u−1)+1,n−(2u−1)+1 with ln−(2u−1)+1,n−(2u−1), u ∈ In

4
.

c) Nn = (Ns,r)s,r∈In/2
, determined by (inclined swaps)

Ns,r =



(
(n− 2(s− 1))n− 2(r − 1) (2s− 1)n + (2r − 1)

(2s− 1)n− (2r − 1) (n− 2s)n + 2r

)
, if s, r have equal parities;

(
(n− 2s)n + 2r (2s− 1)n− (2r − 1)

(2s− 1)n + (2r − 1) (n− 2(s− 1))n− 2(r − 1)

)
, if s, r have different parities.

3 The Main Result

The proposition below is the essence of the method.

Proposition 1. If in Hn we do the same procedure which turns Ln into Nn (item c) we get a ma-
trix Mn, which is a magic square.

Proof. In Ln the sums of the numbers of the first and second rows of the double row of s order are
given respectively by

n/2∑
r=1

((n− 2(s− 1))n− 2(r − 1) + (2s− 1)n− (2r − 1)) = cn

and
n/2∑
r=1

((2s− 1)n + (2r − 1) + (n− 2s)n + 2r) = cn.

In Nn the sums of the numbers of the first and second rows of any double row of odd order s are given
respectively by

n/4∑
u=1

[n− 2(s− 1)− 4(u− 1)] +

n/4∑
u=1

[(2s− 1)n + 4u− 3] +

n/4∑
u=1

[(n− 2s)n + 4u] +

n/4∑
u=1

[(2s− 1)n− (4u− 1)] = cn

and

n/4∑
u=1

[(2s− 1)n− (4u− 3)] +

n/4∑
u=1

[(n− 2s)n + 4u− 2] +

n/4∑
u=1

[(2s− 1)n + 4u− 1] +

n/4∑
u=1

[(n− 2(s− 1))n− (4u− 2)] = cn.

Similarly, in Nn, the same result also applies to all double rows of even orders. Using the same procedure as
above we also prove that the sums of the numbers of all columns of Nn are equal to cn. Let r′ = n

2 − r + 1.
So, from (1) results

Ls,r′ =

(
(n− 2(s− 1))n− (n− 2r) (2s− 1)n− (n− 2r + 1)

2sn− 2r + 1 (n− 2s)n + n− 2r + 2

)
.
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Note that

[(n− 2(s− 1))n− 2(r′ − 1)]− [(n− 2s)n + 2r′] = −[(2s− 1)n− (2r − 1)]− [(2s− 1)n + (2r − 1)]

and

[(2s− 1)n− (2r′ − 1)]− [(2s− 1)n + (2r′ − 1)] = −[(n− 2(s− 1))n− 2(r − 1)]− [(n− 2s)n + 2r],

indicating that the inclined swaps, when done at Ln to generate Nn, do not change the sum of the numbers
of the rows of Ln, which is cn. Horizontal swaps followed by inclined swaps (together) result on: inclined
swaps, which cancel each other out (due to the fact that they transfer opposite values to the first row);
swap (2s−1)n−(n−2r+1) with (n−2s)n+n−2r+2 and (n−2(s−1))n−2(r−1) with (2s−1)n+(2r−1).
These two swaps imply transfers of opposites values to the first row of the double order s, whether r = s,
r = n

2 − s + 1 or any other situation. Therefore, a sum of the numbers of any row of Mn is cn. Note that
the numbers of the first column of the double column of odd order 2(u− 1) + 1 of Mn are the same as the
first column of the double column of 2(u− 1) + 1 order of Nn. In fact, if in (1) we do s = r and establish
only inclined swaps results

Ns,s =

(
(n− 2(s− 1))n− 2(s− 1) (2s− 1)n + (2s− 1)

(2s− 1)n− (2s− 1) (n− 2s)n + 2s

)
.

If in (1) we do s = r and establish horizontal swaps followed by inclined swaps results

Ms,s =

(
(2s− 1)n− (2s− 1) (2s− 1)n + (2s− 1)

(n− 2(s− 1))n− 2(s− 1) (n− 2s)n + 2s

)
.

Then, in the block of (s, s) order there will be only the swaps of positions of the numbers (n−2(s−1))n−2(s−
1) and (2s−1)n−(2s−1). Similarly in the double block of order (n/2−(2(s−1)+1)+1, n/2−(2(s−1)+1)+1)
there will only be swaps of positions between numbers. In the other positions, the numbers of first column
of Mn and of Nn are equal. The proof for the second column is identical. The proof for the columns of
even order follows the same reasoning. Then, the sum of the numbers of any column of Mn is equal cn.
Note that the numbers of the main diagonal and of the secondary diagonal remain unchanged by inclined
swaps. Therefore, the diagonals of Mn and Hn are respectively equal. From (1) follows that the sum of
numbers of the main diagonal of Ln is equal to

n/2∑
s=1

((n− 2(s− 1))n− 2(s− 1) + (n− 2s)n + n− 2s + 2) = cn +
n

2
.

Doing r = n/2− s + 1 in (1), we see that the sum of numbers of the secondary diagonal of Ln is equal to
cn−n/2. On the other hand, the sum of the numbers of the main diagonal of Hn is equal to sum of the num-
bers of the main diagonal of Ln minus the sum of the values retired through of the horizontal swaps, namely,

(cn +
n

2
)−

n/4∑
u=1

(((n− 2(u− 1))n− 2(u− 1))− ((2u− 1)n− (2u− 1)))−

n/4∑
u=1

(((2u− 1)n− 2(u− 1))− ((n− 2(u− 1))n− (2u− 1))) = cn.

For secondary diagonal of Hn, the sum of the diferences between the horizontally exchanged numbers is
equal to

n/4∑
u=1

((2(u−1)n+(2u−1))−(n−(2u−1)n+2u))+

n/4∑
u=1

(((n−(2u−1))n+(2u−1))−(2(u−1)n+2u)) = −n

2
.

This indicates that after the horizontal swaps the secondary diagonal is left with n/2 units more, therefore
the sum of the numbers of the secondary diagonal of Mn is cn.
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Examples:

L4 =


16 3 14 1
5 10 7 12
8 11 6 9
13 2 15 4

, H4 =


3 16 1 14
5 10 7 12
8 11 6 9
2 13 4 15

,

N4 =


16 5 12 1
3 10 7 14
2 11 6 15
13 8 9 4

, M4 =


3 5 12 14
16 10 7 1
13 11 6 4
2 8 9 15

.

L8 =



64 7 62 5 60 3 58 1
9 50 11 52 13 54 15 56
48 23 46 21 44 19 42 17
25 34 27 36 29 38 31 40
32 39 30 37 28 35 26 33
41 18 43 20 45 22 47 24
16 55 14 53 12 51 10 49
57 2 59 4 61 6 63 8


, M8 =



7 9 52 5 60 13 56 58
64 50 11 62 3 54 15 1
34 23 21 27 38 44 42 31
25 48 46 36 29 19 17 40
32 41 43 37 28 22 24 33
39 18 20 30 35 45 47 26
57 55 14 59 6 51 10 8
2 16 53 4 61 12 49 63


.

4 Some Properties of the Magic Squares

The magic squares Mn (for n > 4 ), which we call magic squares of the Lohans, have the following properties:

i) In each of the rows, columns and diagonals there are exactly n/2 odd numbers. The same goes for
even numbers;

ii) The odd numbers are in radial symmetry with respect to the intersection point of the diagonals, as
are the even numbers. The difference between two symmetrical odd numbers is a multiple of n, and
the same is true for even numbers. We have mi,n+1−j −mn+1−i,j is divisible by n;

iii) Both odd and even numbers are in bilateral symmetry with respect to the diagonals and the two
orthogonal axes that make an angle of 45◦ to them;

iv) The set of odd numbers corresponds to a set connected by paths. The same goes for even numbers;

v) Every odd number is surrounded by even numbers and, also, every even number is surrounded by
odd numbers;

vi) For each n the sum of the corners of each of central squares is equal to S(n) = 2(n2 + 1);

vii) For each n,

Det


n2 − 2sn + 2n− 2r + 2 2sn− n− 2r + 1 n2 − 2sn + 2n− 2r 2sn− n− 2r − 1

2sn− n + 2r − 1 n2 − 2sn + 2r 2sn− n + 2r + 1 n2 − 2sn + 2r + 2
n2 − 2sn− 2r + 2 2sn + n− 2r + 1 n2 − 2sn− 2r 2sn + n− 2r − 1
2sn + n + 2r − 1 n2 − 2sn− 2n + 2r 2sn + n + 2r + 1 n2 − 2sn− 2n + 2r + 2

 = 0,

∀s, r ∈ In/2

viii) From (1) we have mi,j + mi,n+1−j = n2 + 1,∀i, j ∈ In;
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ix) In the equation (1) the sum of the matrix entries is equal to 2n2 + 2 and in the item vii above the
corresponding sum is four times this value;

x) For each n, Det(Mn) = 0.

Observation. The item x is obtained directly by the Gaussian elimination method. The results cited in
viii and x lead us to the following general result on matrices:

Proposition 2. If M = (mij)n×n is a matrix of order n > 2 and in it the hypothesis mi,j + mi,n+1−j =

k, ∀i, j ∈ In (k constant) is valid, then Det(M) = 0.

Proof. This result is also proved by the Gaussian elimination method. However, for even orders, this
proposition can be proved easily using the fact that the determinant is an n-linear function in relation to
the columns of the matrix. In particular, we can use it to prove that Det(Mn) = 0.

5 Discussion

In the method the number (1) is never in the corners as usually happens in the other methods. The method
is not a special case of any established methods. For the case n = 4 the magic square has all the beautiful
properties of Dürer’s magic square, differing only as follows: in Dürer’s magic square we have 9+3+8+14 =
5 + 2 + 12 + 15 = 34 and in the case presented here we have ((13 + 5 + 1 + 9) + (16 + 12 + 4 + 8))/2 = 34.
However, the sum of the common terms is 5 + 9 + 8 + 12 = 34. The aforementioned proposition establishes
a new general method to build doubly even magic squares. The presented method has an easy analytical
treatment and makes strong use of symmetry and parity.
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