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Abstract: We present simple analytical solution for the unsteady advection-dispersion equation describing
the pollutant concentration C(x, t) in one dimension. In this model the water velocity in the x-direction is
taken as a linear function of x and dispersion coefficient D as zero. In this paper by taking k = 0, k is the
half saturated oxygen demand concentration for pollutant decay, we can apply the Laplace transformation
and obtain the solution. The variation of C(x, t) with different times t upto t→∞ (the steady state case)
is taken into account advection-dispersion equation in our study.
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Nomenclature

A Cross-section area of the river (m2).
C Pollutant concentrations (kg.m−3).
D Dispersion coefficient of pollutant in the x-direction (m2.day−1).
k Half-saturated oxygen demand concentration for pollutant decay (kg.m−3).
k1 Degradation rate coefficient for pollutant (day−1).
L Polluted length of river (m).
s Laplace transform variable.
p Rate of pollution (kg.m−3) at the origin .
q Added pollutant rate along the river (kg.m−1.day−1).
t Time (day).
u Water velocity in the x-direction (m.day−1).
x Position (m).

1 Introduction

Pollution of rivers has become a matter of concern for scientists working in environmental engineering, hy-
drology, chemical engineering, geology, soil physics, and mathematics. If important hydraulic and chemical
processes are examined together, analytical solutions of the mathematical models representing pollutant
transport are hardly possible [21]. To forecast water quality and to give reliable tools for water quality
management in affected areas, mathematical models have been used widely. The purpose of this study is
to promote analytical solution of one-dimensional unsteady advection-dispersion equation using Laplace
transforms method. It is a particular case of the research made by Pimpunchat et al. [11] which was
carried at Tha Chin River in Thailand. The poor water quality of the Bagmati River in Kathmandu, Nepal
was the motivation for this study. The rapid urban growth, continuous dumping of solid wastes, domestic
sewage, industrial waste, insufficient waste-water treatment facilities, low levels of awareness are the main
reasons for pollution in the Bagmati River (Fig. 1) [18].

Pimpunchat et al. [12] presented a mathematical model for river pollution comprising a coupled pair of
nonlinear equations and had investigated the effect of aeration on the degradation of pollutant. In some
simplified cases they had obtained analytic steady-state solutions. Carslaw and Jaeger [1] have derived
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Figure 1: Polluted Bagmati River in Kathmandu, Nepal [18]
.

analytical solutions for one-dimensional transport in composite media with Laplace transforms and with
Green’s functions. Marusic [10] presented a mathematical model for analyzing the hydrodynamics and pol-
lutant dispersion in river-type systems. He was able to report changes in the pollutant concentration in the
river with time. According to the study of Johari et al. [3], the results of one dimensional advection diffu-
sion equation had successfully been used to predict the transportation of water pollution concentration by
manipulating the velocity and diffusion parameters. Salkuyeh [16] put forward a method to find the exact
solution of the system of ordinary differential equations obtained when we discretize the convection-diffusion
equation with regard to the space variable. Pochai et al. [13] and Tabuenca et al. [19] presented the finite
element method for solving the water pollution models in one and two dimensional water areas respectively.
Van Genuchten and Alves [20] introduced analytical solutions for a physical system in a semi-infinite do-
main with zero initial concentration. Savovic and Djordjevich [17] presented numerical solution for the one
dimensional advection-diffusion partial differential equation with variable coefficients in semi-infinite media.
Kumar et al. [6] have derived analytical solutions for one-dimensional advection–diffusion equation in a
longitudinal finite initially solute free domain with variable coefficients. Wadi et al. [21] presented simple
analytical solutions for the unsteady advection-dispersion equations describing the pollutant concentration
in one dimension. The solutions were obtained by using Laplace transformation technique. According to
the study of Manitcharoen and Pimpunchat [9], the unsteady state solutions of pollutant concentration by
considering advection-dispersion equations in one dimension were proposed by using the Laplace transform
technique and the explicit finite difference technique, for analytical and numerical solutions, respectively.
In recent years many techniques have been developed to find the solution of partial differential equations
[4, 5, 14, 15]. One of such techniques is Laplace transform, which is a very useful technique.

2 Mathematical Model

The water pollution or the concentration of the pollutant C(x, t) is assumed to vary with time t (days) along
the length of the river L(m) (the polluted length of the river) where it is assumed that the rate of pollutant
addition along the river q(kg/m day) is constant. An unsteady flow of water pollutant concentration in
one dimension can be described by advection-dispersion equation [12]:

∂(AC)

∂t
= D

∂2(AC)

∂x2
− ∂(uAC)

∂x
− k1

X

X + k
AC + qH(x); 0 ≤ x < L, t > 0 (1)
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where H(x) is the Heaviside function defined by

H(x) =

{
1 if 0 < x < L

0 otherwise.
(2)

Here, u is the water velocity in x- direction, C is the concentration of pollutant, D is the dispersion
coefficient of pollutant in x- direction, k1 is the degradation rate coefficient of pollutant, q is the added
pollutant rate along the river, k is the half saturated oxygen demand concentration for pollutant decay, X
is the concentration of the dissolved oxygen within the river and A is the cross-section of area of river. We
assume the stream reach is considered to be homogeneous system. So we take the parameters A, q, D, k1
as constants over time and space [8].

In the general case when k 6= 0, it will be impossible to use Laplace transform to suggest an exact solution
[21]. We apply Laplace transformation by taking k = 0. In this model we take zero dispersion D (i.e.
D = 0) [11]. Using these above conditions, the model equation (1) becomes:

∂(AC)

∂t
= −∂(uAC)

∂x
− k1AC + q; 0 ≤ x < L, t > 0 (3)

Let us consider u(x, t) = 1 + ax [2] for water velocity, where a is non-zero real constant has the dimension
of inverse of space variable. Equation (3) can be written as

∂(C)

∂t
= −u∂(C)

∂x
− Ca− k1C +

q

A
; 0 ≤ x < L, t > 0 (4)

This equation is solved under the initial and boundary conditions as:

C(x, 0) = 0; x ≥ 0 (5)

C(0, t) = p; t > 0 (6)

where C(x, t) is the pollutant concentration for the case when dispersion coefficient D = 0, the initial rate
of pollution along the river is supposed zero and p is the rate of pollution at the origin.

2.1 The analytical solution

Laplace transformation technique is defined by equation (7), and is used to get the analytical solution. The
Laplace transformation may be defined as: If f(x, t) is any function defined in a ≤ x ≤ b and t > 0, then
its Laplace transform with respect to t is denoted by:

L{f(x, t)} = F (x, s) =

∫ ∞
0

e−stf(x, t)dt, s � 0 (7)

where s is called the transform variable [7]. The inverse Laplace transformation is denoted by L−1{F (x, s)} =
f(x, t) and defined by the complex variable:

L−1{F (x, s)} = f(x, t) =
1

2πi

∫ c+i∞

c−i∞
F (x, s)e−stf(x, t)ds, c � 0 (8)

Applying Laplace transformation to equation (4) gives:

sC̃(x, s)− C(x, 0) = −u∂C̃
∂x
− C̃(x, s)a− k1C̃(x, s) +

q

As

sC̃(x, s)− C(x, 0) = −u∂C̃
∂x
− (a+ k1)C̃(x, s) +

q

As
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Using (5), we get,

sC̃(x, s) = −u∂C̃
∂x
− (a+ k1)C̃(x, s) +

q

As

∂C̃

∂x
+

(
s+ a+ k1

1 + ax

)
C̃ =

q

As(1 + ax)

Integrating factor (I.F.) = e
∫
( s+a+k1

1+ax )dx = (1 + ax)(
s+a+k1

a )

Thus

C̃(1 + ax)(
s+a+k1

a ) =
q

As

∫
(1 + ax)(

s+k1
a )dx

C̃(1 + ax)(
s+a+k1

a ) =
aq

As(s+ a+ k1)
(1 + ax)(

s+a+k1
a ) + C1

where C1 is the constant of integration.
Therefore

C̃(x, s) =
aq

As(s+ a+ k1)
+ C1(1 + ax)−( s+a+k1

a ) (9)

Taking laplace transform of (6)

C̃(0, s) =
p

s
(10)

Using (10) on (9), we get,
p

s
=

aq

As(s+ a+ k1)
+ C1

Therefore
C1 =

p

s
− aq

As(s+ a+ k1)

Thus
C̃(x, s) =

aq

As(s+ a+ k1)
+
p

s
(1 + ax)−( s+a+k1

a )

− aq

As(s+ a+ k1)
(1 + ax)−( s+a+k1

a ) (11)

The inverse of Laplace transform is

C(x, t) =
aq

A

[
1

k1 + a
− 1

k1 + a
e−(k1+a)t

]
+ p(1 + ax)−( k1+a

a )H

(
t+

log(1 + ax)

a

)

−aq
A

[(
1

k1 + a
− 1

k1 + a
e−(k1+a)t

)
(1 + ax)−( k1+a

a )H

(
t+

log(1 + ax)

a

)]
where

H

(
t+

log(1 + ax)

a

)
is Heaviside function. This is used to capture the fact that pollutant is discharged for

(
t+ log(1+ax)

a

)
> 0

only.

C(x, t) =
aq

A(k1 + a)
− aq

A(k1 + a)
e−(k1+a)t

+p(1 + ax)−( k1+a
a ) − aq

A(k1 + a)
(1 + ax)−( k1+a

a )

+
aq

A(k1 + a)
e−(k1+a)t(1 + ax)−( k1+a

a ) (12)

which can be written as

C(x∗, t) = q∗ − q∗e−k
∗
1 t + px∗ − q∗x∗ + q∗e−k

∗
1 tx∗
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where

k∗1 = (k1 + a), q∗ =
aq

Ak∗1
, x∗ = (1 + ax)−

k∗
1
a

∴ C(x∗, t) = px∗ + q∗(1− x∗)(1− e−k
∗
1 t) (13)

Figure 2: Analytical solution with dispersion for C at different time described by the equation (12)
top: p=0, bottom: p=1.
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2.1.1 Steady state case

Equation (12) for the steady state when t→∞ gives:

C(x) =
aq

A(k1 + a)
+ p(1 + ax)−( k1+a

a ) − aq

A(k1 + a)
(1 + ax)−( k1+a

a ) (14)

For the special case when p = 0 the equation (14) will be the same as that obtained by Wadi et al. [21].

Figure 3: Analytical solution with dispersion for C at different time described by the equation (12)
top: q=0.5, bottom: q=0.1.
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3 Result and Discussion

We present simple analytical solution for the unsteady advection dispersion equation describing the pollu-
tant concentration C(x, t) in one dimension using Laplace transformation method for which zero dispersion
D is taken. From solution we obtained variation of C with time and space. The time is given in days and
the values of the concentration of pollutant are measured in (kg.m−3). In general, the pollutant concen-
tration is given by equation (12).

Figure 2 on the top shows the variation of C in the range 0 ≤ x ≤ 20 with the time t described by equation
(12) for t = 0.5, 1.0, 1.5 (days) and t → ∞. To test our model we set the parameters A, q, a, k to be 1
and p = 0 [11]. From figure 2 on the top, for x ≥ 0 as t increases C increases and reaches its maximum
value as t → ∞. In general, the concentration of pollutant increases as x increases. From figure 2 on the
bottom, we see that: as x increases the value of C decreases for any time t, it reaches a constant value near
the sink. The effect of the time t is very small near the upstream and dominant near the downstream. As
t increases the value of C increases at any cross-section of the river. This result is in good agreement with
that reported by Wadi et al. [21].

Figure 3 on the top shows the variation of C along the river from source up to sink at different times
t = 0.5, 1.0, 1.5 (days) and t → ∞ and added pollutant rate along the river q = 0.5 and figure 3 on the
bottom shows the variation of C along the river with q = 0.1. From figure 3, if the added pollutant rate
along the river q decreases, the variations of C at different times come to near at each other. If q is in very
small amount the variation of C along the river at different times coincide to each other.

4 Conclusion

Simple analytical solution for the unsteady advection-dispersion equation describing the pollutant concen-
tration C(x, t) in one dimension is derived by using Laplace transformation technique. We have obtained
analytic unsteady solution by taking the water velocity u in the x-direction as a linear function of x and
dispersion coefficient D as zero. Numerical studies show that the variation of C with time t is caused only
by pure convection and rate of pollutant addition along the river and if the added pollutant rate along the
river q is in very small amount, the variation of C along the river at different times coincide to each other.

Acknowledgement: Keshav Paudel acknowledges University Grants Commission (UGC), Nepal, for the
financial support provided as a MPhil fellowship (MPhil-75/76-S & T-9).
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