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Abstract: Network interdiction problem arises when an unwanted agent attacks the network system to
deteriorate its transshipment efficiency. Literature is flourished with models and solution approaches for
the problem. This paper considers a single commodity lexicographic maximum flow problem on a directed
network with capacitated vertices to study two network flow problems under an arc interdiction. In the
first, the objective is to find an arc on input network to be destroyed so that the residual lexicographically
maximum flow is lexicographically minimum. The second problem aims to find a flow pattern resulting
lexicographically maximum flow on the input network so that the total residual flow, if an arc is destroyed,
is maximum. The paper proposes strongly polynomial time solution procedures for these problems.
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1 Introduction

An interdiction problem arises when a supplier (e.g., a smuggler) has a plan to supply a commodity (drug
packets) from one place to another through a transportation network, and, in the mean time, an interdictor
(anti-drug agency) gets information about the plan. The interdictor has limitation that the plan cannot be
destroyed completely but a desired link in the network be destroyed to seize the commodity passing through
it. Thus, the interdictor aims to interdict a link through which a maximum packets of commodity can pass.
Supplier is aware of possible loss of commodity from interdictor. So, s/he aims to dispatch the packets of
commodity in such a way that, if any link is interdicted, the number of lost packets is minimum. Here,
both, supplier’s problem and interdictor’s problem, can be interpreted as network interdiction problem with
different flavors, e.g., [2, 11, 13, 14]. First problem is supplier’s network interdiction (SNI) problem that
wishes for a minimum loss of flow (alternatively, to maximize the residual flow) and second is interdictor’s
network interdiction (INI) problem that wishes for a maximum loss of flow (alternatively, to minimize the
residual maximum flow), if interdiction on network with a limited resources occurs. Optimal flow pattern
obtained as a solution of SNI problem is also helpful to interdictor for necessary actions, anti-drug efforts
for example, and utilizing limited resources. Likewise, network interdiction problem arises in emergency
evacuations, in the management of communication system, power grid, logistic supply and in controlling
communicable diseases when terrorist attacks, looting, vandalism or some action of an adversary occurs.

Network interdiction problem arises as an extension of the maximum flow problem [6]. The network inter-
diction problem was first introduced in [13]. Since then numbers of models for the problem with different
applications have been taken into consideration and solutions are proposed. Some of models, solution ap-
proaches and their complexities are discussed in [5, 9, 12]. The scenario at which interdictor injects some
adversarial traffic flows on the network to reduce its throughput flow is modeled in [7]. Authors in [10]
gave the network interdiction model in which dynamic interaction between the strategies and responses of
the interdictor and supplier based on the evolving state of network resulting from their immediate deci-
sions occurs. Network interdiction problem is modeled with transportation network that consists vertices
and directed arcs. The source and the sink are two specified vertices that represent the place from where
the flow units (drugs, goods, data, etc.) are dispatched and the place at which the dispatched units are
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supposed to arrive, respectively. Remaining vertices are intermediate vertices that serve as transshipment
vertices as well as temporary storage. Each vertex is connected to one or more other vertices by directed
arcs representing the links between two places showing to and fro direction. Each arc has its capacity that
bounds the flow units traveling through it from above. Then the objective of a SNI problem is to find a
maximum flow pattern on input network in such a way that, if interdiction occurs, the residual flow is max-
imum. On the other hand, the objective of INI problem is to find interdiction spots (arcs and/or vertices)
on input network to destroy so that the residual maximum flow is minimum, provided that resources are
limited. These two problems are quite different in nature [2].

It is not always easy to reorient the flow traveling through an arc if it is interdicted (destroyed). Therefore,
flow along this arc is lost. In such situation, besides sending the maximum flow units of goods to the
destination, a supplier may also wish to send to the intermediate spots of given priority order maximally
for reasons– potential threat of damaging, looting or seize of the goods at source; storage capacity and high
rental rates at source, etc. The prioritization depends upon the status of the spot: potential threats from
interdictors, storage capacity, rental rate, etc. Stored units of goods can be transshipped to the destination
later. Motivated from these the paper considers SNI problem and INI problem studied in [2] with some
modifications in model. Modified model is based on the network flow model with weak flow conservation
constraints where intermediate vertices may have fixed storage capacities and are prioritized for storage
purpose. In the modified SNI problem it is aimed to find a lexicographic maximum flow pattern in such a
way that the total residual flow is maximum, if an arc interdiction is allowed. The modified SNI problem
is termed as lexicographic maximum flow interdiction (LexMaxFI) problem in the paper. The network
flow problem with this later objective without any interdiction is termed as lexicographic maximum flow
(LexMaxF) problem and has been studied in [4] (cf. [3]) with its model and polynomial time solution.
Likewise, in INI problem the objective is to find such an arc on the network to interdict so that the residual
lexicographic maximum flow is lexicographically minimum. The INI problem is termed as lexicographic
min-max flow interdiction (LexMinMaxFI) problem. The later problem can also be viewed as an extension
of most vital arc problem [1].

Rest of the paper is organized as follows. Section 2 presents a mathematical model of lexicographic max-
imum flow problem [4] and formally defines LexMaxFI problem and LexMinMaxFI problem. Solution
procedures for both problems have been discussed in Section 3. Section 4 concludes the paper.

2 Problem Formulation

A directed graph G = (V,A) with vertex set V and arc set A, both to be finite, such that n := |V | and
m := |A| is taken for modeling the problems. Two specified vertices denoted by s and d represent the
source and the sink, respectively. A terminal set S ⊂ V with S := {v1, . . . , vr} prioritized from higher to
lower priority, i.e., d = v1 ≻ · · · ≻ vr, to be given. Then the corresponding two terminal transportation
network is represented as N = (G, l(a), u(a), k(v), s, d). Here, l : A → N0 := N ∪ {0} and u : A → N0

represent the lower and upper arc capacity function which bounds the number of flow units on each arc
a ∈ A from below and from above, respectively. Similarly, the vertex capacity function k : S → N0 delimits
the total number of flow units, which may be held in each of the vertices v ∈ S. A transportation network
N is depicted in Figure 1.
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Figure 1: A network N with arc capacity next to each arc and the vertex capacity inside the parenthesis
near by each vertex except the source s.
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The non-negative flow variables f(a) defined by f : A→ N0 specifies the number of flow units entering arc
a ∈ A in the network N . Such flow units are dispatched on N from the source s. The number of flow units
f(a) entering arc a is assumed to be bounded by the corresponding capacity u(a). That is,

0 ≤ f(a) ≤ u(a) ∀ a ∈ A. (1)

The excess flow at vertex v ∈ V , denoted by exf (v), is defined as

0 ≤ exf (v) :=
∑

a∈δ−(v)

f(a)−
∑

a∈δ+(v)

f(a) (2)

where δ−(v) := {a ∈ A : a = (w, v) for some vertex w ∈ V } and δ+(v) := {a ∈ A : a = (v, w) for some
vertex w ∈ V } denote the set of arcs entering and leaving vertex v ∈ V , respectively.

Further, we need to ensure that the excess flow at each vertex v ∈ S is to be bounded by the capacity k(v).
That is,

exf (v) ≤ k(v) for all v ∈ S. (3)

To this end, the objective function of lexicographic maximum flow problem asks to lexicographically max-
imize the vector (exf (v1), . . . , exf (vr))

⊤ subjected to the constraints (1)–(3).

Furthermore, it is assumed that the flow traveling on an arc cannot be reoriented but is lost totally (partial
loss is prohibited), if the arc is destroyed. The model do not allow any loops in the network. For a network
with these setup, the objective of INI problem is to lexicographically minimize the lexicographic maximum
flow on N , if an arc (v, w) ∈ A is allowed to destroy. The network flow problem with this objective is
phrased as lexicographic min-max flow interdiction problem and abbreviated as LexMinMaxFI problem.
For the same network setup, the objective of SNI problem is to find a lexicographic maximum flow pattern
on N so that the total residual flow is maximum, if an arc is destroyed. The network flow problem with
this objective is phrased as lexicographic maximum flow interdiction problem and abbreviated as LexMaxFI
problem.

3 Solution Discussion

At the first part it is considered a LexMinMaxFI problem for the network N with terminal set S in N as
described in Section 2 where k(d) =∞ and k(v) to be finite for all v ∈ S \{d}. It is sufficient to find an arc
on input network N to be removed such that its removal optimizes the objective of LexMinMaxFI problem.
A straight forward technique [2] to find such an arc is as follows: Compute, for each arc, the lexicographic
maximum flow value in the reduced network with removed arc of consideration; and pick the arc up whose
removal minimizes the lexicographic maximum flow value. In the case of network without intermediate
storage capability, the number of iteration could be reduced by taking only those arcs in to consideration
whose capacities are at least the maximum capacity of the arc in min-cut of the network [2]. However, it
is not possible in the case of network with intermediate storage capability. The noteworthy step, in finding
such arc, is the computation of lexicographic maximum static flow (LexMaxSF) [4] corresponding to each
arc a ∈ A.

The computation procedure (Algorithm 1) for solving LexMaxSF problem is as follows. First, the network
N with vertex capacities is transformed into a network N ′ without vertex capacities. Then an artificial
vertex v′i for each vertex vi ∈ S is introduced. The artificial vertex v′1 := d′ is the supersink. Then, the
vertices vi and v′i are connected by an artificial arc (vi, v

′
i) with u(vi, v

′
i) = k(vi). Moreover, each vertex

v′i is linked to the super-sink d′ by introducing an artificial arc (v′i, d
′) having zero arc capacity. Only the

artificial arc (d, d′) gets infinite arc capacity. Further, every arc (original and artificial) gets a lower arc
capacity of zero, i.e., l(a) = 0 for all a. Doing this, the network N = (G, l, u, k) is transformed into the
network N ′ = (G′, l, u) with G′ = (V ′, A′). Then any of the maximum flow algorithms can be applied on
reduced network repeatedly for each intermediate vertex vi : k(vi) > 0 in given priority order.
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Algorithm 1 A lexicographic maximum flow (LexMaxF) algorithm [4]

Input: A network N = (G, l, u, k), S = {v1, . . . , vk} ⊂ V with d = v1 ≻ · · · ≻ vk, l(a) = 0 for all a ∈ A
Output: A lexicographically maximum flow satisfying the vertex capacities for all vertices in S
1: d′ ←super sink, V ← V ∪ {d′}, A← A ∪ {(v1, d′)} with u(v1, d

′) = ∞
2: Compute maximum s-d′-flow in G and let f∗ be the optimal value
3: l(v1, d

′)← f∗ and u(v1, d
′)← f∗

4: for i = 2, . . . , k do
5: V ← V ∪ {v′i}, A← A ∪ {(vi, v′i), (v′i, d′)}
6: u(vi, v

′
i)← k(vi), l(vi, v

′
i)← 0

7: u(v′i, d
′)←∞ and l(v′i, d

′)← 0
8: Compute maximum s-d′-flow in N and let f∗ be the optimal value
9: Let f∗(v′i, d

′) be the flow value on arc (v′i, d
′) w.r.t. f∗

10: u(v′i, d
′)← f∗(v′i, d

′) and l(v′i, d
′)← f∗(v′i, d

′)

The aim, in the next problem, is to find a lexicographic maximum s − d flow pattern on N such that the
total residual s− d flow, if an arc on N is destroyed, is maximum. To find such flow pattern the total flow
value is scattered among as many arcs as possible so that the damage of any arc results minimum loss of
flow. That is, it requires to find a number λ, as small as possible, the flow f(u, v) for any arc (u, v) is not
greater than λ, and the corresponding flow value is not less than the original maximum s− d flow.

Before finding such λ the input network N is transformed into new network N+ by introducing a super-
sink D and connecting it to each vertices v ∈ S by an artificial arc (v,D) with capacity u(v,D) to be the
corresponding vertex capacity k(v). That is, the input network N is transformed to N+ = (V +, A+) where
V + = V ∪ {D} and A+ = A ∪ {(v,D) : v ∈ V } with u(v,D) = k(v). Now, the transformed network is one
without vertex capacities. Transformed network N+ of network N depicted in Figure 1 is shown in Figure
2 (left).

To find λ the following steps are performed: At first a maximum s − D flow f∗ and min-cut X with
value F ∗ are computed in N+. Then it is required to initialize λ as λ := max{u(v, w) : (v, w) ∈ X},
and construct new network N+(λ) as N+(λ) := (V +, A+, u(λ)) where u(λ) := min{u(v, w), λ} for all
(v, w) ∈ A\{(d,D)}. λ is computed, in iterative way until F (λ) = F ∗, as λ := λ+(F ∗−F (λ))/q(λ). Here,
q(λ) denotes the number of arcs (v, w) ∈ X(λ) with u(v, w) = λ. The network N+(λ) is updated with
latest value of λ. The capacity of arc (d,D) remains unaltered in each iteration. Finally, all the artificial
arcs are removed from updated N+(λ) restoring the vertex capacities and Algorithm 1 is applied on it to
compute lexicographic maximum static flow. The procedure is summarized in Algorithm 2.
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Figure 2: Transformed network N+ of network N depicted in Figure 1 with terminal set S = {d, z, y} (left)
and network N+(λ) with λ = 9 (right).

Example 1: Consider the network N depicted in Figure 1 with source s and sink d. Consider the
terminal set S : {d, z, y} with priority order d ≻ z ≻ y. Transform N to N+ as shown in Figure 2 (left).
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Algorithm 2 A lexicographic maximum flow interdiction algorithm

Input: A network N = (G, l, u, k), S = {v1, . . . , vk} ⊂ V with d = v1 ≻ · · · ≻ vk, l(a) = 0 for all a ∈ A
Output: A lexicographic maximum flow pattern on N with maximum residual flow, if an arc on N is

destroyed
1: Transform network N into N+ = (V +, A+) where V + = V ∪ {D} and A+ = A∪ {(v,D) : v ∈ S} with

u(v,D) = k(v)
2: Find a maximum flow pattern f∗ with D as the sink, and min-cut X with value F ∗ in N+

3: Compute λ as in [2]:
Initialize λ as λ := max{u(a) : a ∈ X}
Find f(λ), F (λ), X(λ), q(λ) in N+(λ)
while F (λ) < F ∗ do
λ := λ+ (F ∗ − F (λ))/q(λ);
Find f(λ), F (λ), X(λ), q(λ) in N+ updated with λ;
end while

4: Modify N+(λ) by removing all artificial arcs and restoring the vertex capacities
5: Apply Algorithm 1 on modified network N+(λ)
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Figure 3: Transformed network N+(λ) with λ = 10 (left) and final network after restoring vertex capacities
(right).

Application of maximum flow algorithm in N+ with s as source and D as sink gives maximum flow f∗ and
min-cut X = {(z,D), (z, d), (y, d), (y,D)} with value F ∗ = 20. Here, λ = max{2, 8, 9, 1} = 9. Updating
N+ with current value of λ, Figure 2 (right), and applying maximum flow algorithm on it, the maximum
flow is with value F (λ) = 18 which is less than F ∗ = 20. Also,the min-cut is {(s, x), (s, y)}. It requires to
update λ further. For, λ := λ+ (F ∗ − F (λ))/q = 9 + (20− 18)/2 = 10. Updating N+ with current value
of λ = 10, Figure 3 (left), and applying maximum flow algorithm on it, the maximum flow is with value
F (λ) = 20 which is equal to F ∗. Restoring the vertex capacities on the network N+ with λ = 10, Figure
3 (right), and applying Algorithm 1. The destruction that maximizes the loss of flow units is either the
arc (s, x) or (s, y) with updated capacities of value 10 for each. Thus, the total residual flow in worst case,
when an arc is destroyed, is 10 units.

Theorem 1. Algorithm 2 solves LexMaxFI problem optimally in strongly polynomial time.

Proof. The procedure terminates only when the value of λ is computed in such a way that the maximum
flow value F (λ) in N+(λ) is equal to the maximum flow value F ∗ in N+. Moreover, the flow value F ∗ is
equivalent to the sum of lexicographic maximum flow values on N . On the other hand, the value of λ is
as small as possible that bounds the arc capacities from above in N+(λ). Thus Algorithm 2 computes a
lexicographic maximum flow pattern on N such that the total residual flow, if an arc interdiction occurs,
is maximum.

The time complexity of the algorithm is dominated by the complexity of steps 3 and 5. The initial value
of q(λ) is bounded by the number of arcs in min-cut X that is further bounded by m, and either the step
3 terminates or the value of q(λ) decrease by at least one in each iteration. Thus, if one wishes to apply
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preflow push algorithm of Goldberg and Tarjan [8] to compute a maximum flow, Step 3 requires O(n2m2)
times to execute, [2]. Similarly, Step 5 requires O(n3m) times to compute lexicographic maximum static
flow. Thus, Algorithm 2 runs in O(n3m+ n2m2) which is strongly polynomial time.

4 Conclusion

Application of network interdiction problems are of particular interest for suppliers as well as interdictors.
This paper discussed two network interdiction problems– lexicographic min-max flow interdiction problem
and lexicographic maximum flow interdiction problem; with capability of intermediate storage of flow units.
For this the transportation network with capacitated arcs and vertices is considered and allowed weak con-
servation flow constraints in the flow model. Solution algorithms for both problems are strongly polynomial
time. Solution to the second problem does not guarantee an integral solution since λ need not to be an
integral value. However, one can easily obtain integral solution by using the same value of λ, [2].

Study of the problems with consideration of interdiction cost and dynamic (with respect to time) version
of the problem would be further research in the field. Lexicographic maximum flow interdiction problem
with vertex interdiction would also be an interesting for researchers.
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