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1 Introduction

A partial differential equation is called linear if it is linear in the unknown function and its derivatives. Using
multi-index notation, a partial differential equation is said to be linear if it has the form

∑
|α|≤k aα(x)D

αu =

f(x) for given functions aα (|α| ≤ k) and f [3]. We do not need to work with multi-index notation as all
terms (all of the same order) of the linear equations involved are products of functions by entries of the
”k-dimensional Hessian matrix”. We use a more simplified notation in which may occur ∂xip = ∂xiq in

∂ku
∂xi1∂xi2 ...∂xik

(x⃗) with p ̸= q. Here, we deal with linear partial differential equations written in the form of

the equation (4) in the reference [1], taking L1u = 0. According to Florian Cajori [4], the first ideas related
to partial derivation are from Leibniz, however, the perfect establishment of partial differential equations
was made by Nicolaus Bernoulli : ”Partial differential equations stand out clearly in six examples on
trajectories published in 1719 by Nicolaus Bernoulli (1695 - 1726), the twenty-four year old son of John”.
With Euler and Cauchy, this branch of Mathematics almost acquired its current visibility, with Euler being
a milestone in the study of partial differential equations. Very little is known about non-linear equations
and, about linear equations, there is still no general theory that describes or even connects the various
solving methods developed since Euler. Here, we present one more method. However, as the method
presented is very simple, applicable to any order and based on an additive philosophical principle, it can
be a significant milestone for the linear equations. Many important partial differential equations such as
of Poisson, Laplace, Wave and Tricomi can be studied using the methods and results set out here. We
make very strong restrictions on the functions hs(x̄is) (w = 1, 2, ..., s − 1) and hw(x̄iw) obtained from the
integrations with application of the fundamental theorem of calculus. More detailed research may use less
restrictive conditions to get more refined results. The Proposition 4 of this scientific article points towards
an alternative way of studying harmonic functions.

2 Preliminaries

Let us Consider:

1. x⃗ = (x1, x2, ..., xn) ∈ A , A open set in Rn;

2. k ∈ In = {1, 2, 3, ..., n};
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3. u : A → R, differentiable function (k times), with continuous derivatives.

Consider the k-dimensional Hessian matrix:

H =

(
∂ku

∂xi1∂xi2 ...∂xik

(x⃗)

)
(1)

From H, let us consider the following system, being bi1i2...ik(x⃗) and fi1i2...ik(x⃗) differentiable functions of

order k, with continuous derivatives, and
fi1i2...ik

(x⃗)

bi1i2...ik
(x⃗) being well defined in A:

(
bi1i2...ik(x⃗)

∂ku

∂xi1∂xi2 ...∂xik

(x⃗)

)
= fi1i2...ik(x⃗) (2)

Let us denote

gi1i2...ik(x⃗) =
fi1i2...ik(x⃗)

bi1i2...ik(x⃗)
(3)

So relation (2) can be written as(
∂ku

∂xi1∂xi2 ...∂xik

(x⃗)

)
= (gi1i2...ik(x⃗)) (4)

Observation 1. Repeated applications of the fundamental theorem of calculus for each of the nk partial
differential equations

∂ku

∂xi1∂xi2 ...∂xik

(x⃗) = gi1i2...ik(x⃗) (5)

give us the nk solutions 1.

ui1i2...ik(x⃗) =

∫ ∫ ∫
...

∫
gi1i2...ik(x⃗)dxi1dxi2 ...dxik−1

+

k−1∑
s=1

(
cs,i1i2...ik

k−1∏
θ=s+1

xiθ

)
+ ck−1,i1i2...ik . (6)

Here, the c (under indexed) are real or complex numbers. Obviously,

∂kui1i2...ik

∂xj1∂xj2 ...∂xjk

(x⃗) = gi1i2...ik(x⃗), if (i1, i2, ..., ik) = (j1, j2, ..., jk) . (7)

Consider the function

ũ(x⃗) =
∑

i1,i2,...,ik∈In

ui1i2...ik(x⃗) (8)

Now, we can state the main result.

1Here, as in [7], we will take n > 1, since the case n = 1 is special [6]. By induction in relation to s we prove that

∂k−su
∂xis+1

∂xis+2
...∂xik

(x⃗) =
∫ ∫ ∫

...
∫
gi1i2...ik (x⃗)dxi1dxi2 ...dxis +

s−1∑
w=1

(

∫ ∫
...

∫
hw(x̄iw )dxiw+1dxiw+2 ...dxis )+hs(x̄is ), ∀s ∈

N, 1 ≤ s ≤ k. The functions hs(x̄is ) (w = 1, 2, ..., s − 1) and hw(x̄iw ) are any differentiable functions (k times), with
continuous derivatives, which do not depend on x̄is and x̄iw respectively. They are obtained directly from the integration via
the fundamental theorem of calculus. Then choosing s = k and assuming that hw(x̄iw ) = hw and hk(x̄ik ) = hk are constant

functions, we will have the solution u(x⃗) = ui1i2...ik (x⃗) =
∫ ∫ ∫

...
∫
gi1i2...ik (x⃗)dxi1dxi2 ...dxik +

k−1∑
w=1

(hwxiw+1xiw+2 ...xik )+

hk. Note that we can take hw to be any real number, for any w, 0 < w < k + 1. Using the notations hw = cs,i1i2...ik ,

hk = ck−1,i1i2...ik and xiw+1xiw+2 ...xik =
∏k−1

θ=s+1 xiθ , we will have the Equation (6).
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3 Main results

Proposition 1. In the hypotheses established above, if for (i1, i2, ..., ik) ̸= (j1, j2, ..., jk), we have,

∂kui1i2...ik

∂xj1∂xj2 ...∂xjk

(x⃗) = 0, (9)

then ũ(x⃗) =
∑

i1,i2,...,ik∈In
ui1i2...ik(x⃗) defined in (8) will be the solution of nk partial differential equations

defined in (2), or alternatively in (5). In particular, ũ(x⃗) will be a solution of the 2n
k

− 1 differential
equations defined by the sums of the elements of all non-empty subsets of the set

B =

{
∂ku

∂xi1∂xi2 ...∂xik

(x⃗); i1, i2, ..., ik ∈ In

}
(10)

Demonstration. This proposition is an immediate consequence of the construction of ũ(x⃗) and of the
hypothesis (i1, i2, ..., ik) ̸= (j1, j2, ..., jk).

Observation 2. The thesis2 of Proposition 1 can still be obtained even if the assumptions estab-
lished in (9) are not satisfied. To do so, it is enough to find the unknown functions involved that satisfy
the required integral equations.

Proposition 2. Let f : R2 7→ R analytic function. So, if f is an affine function, then

L(f)(x, y) =

∫ ∫
∂2f

∂y2
(x, y)dxdx−

∫ ∫
∂2f

∂x2
(x, y)dydy = 0. (11)

Demonstration. If f(x, y) = ax+ by + c, then ∂2f
∂y2 = ∂2f

∂x2 and from that follows (11).

4 Applications

When considering order 2, the above method solves the main science equations such as the Wave, Laplace
and Poisson equations. In particular, they give the most obvious solutions in the case of the Wave equation,
such as simple vibrating string translations. In the case of the Poisson equation, they give very varied
solutions. Let’s look at a case of Laplace’s equation.

4.1 Laplacian equation

( ∂2u
∂x2 0

0 ∂2u
∂y2

)
=
( f(x,y) 0

0 −f(x,y)

)
(12)

By the presented theory, we have

u11(x, y) =

∫ ∫
f(x, y)dxdx+ k1(y)x+ k2(y);

u22(x, y) = −
∫ ∫

f(x, y)dydy + v1(x)y + v2(x);

ũ(x, y) =

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + k1(y)x+ k2(y) + v1(x)y + v2(x) (13)

The hypotheses established in (9) are not satisfied because, for example,

∂2u11

∂y2
(x, y) =

∫ ∫
∂2f

∂y2
(x, y)dxdx+ k′′1 (y)x+ k′′2 (y).

2A Theorem is a Proposition which places before us some truth which it is proposed to demonstrate. In the enunciation
of a Theorem, there are always two parts, called the ’Hypothesis,’ and the ’Thesis,’ or ’Conclusion’ [2].
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But if we take k1(y), k2(y), v1(x) and v2(x) to be affine functions, all their second derivatives will be nullified
and we will obtain from (13) the candidate for harmonic function, renamed with the same nomenclature,
as follows

ũ(x, y) =

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d (14)

In (14), the parameters are any real or complex numbers. Derived (14) we will have

∂2ũ

∂x2
(x, y) +

∂2ũ

∂y2
(x, y) =

(
f(x, y)−

∫ ∫
∂2f

∂x2
(x, y)dydy

)
+

(∫ ∫
∂2f

∂y2
(x, y)dxdx− f(x, y)

)
.

This last sum, equaled to zero, gives us∫ ∫
∂2f

∂y2
(x, y)dxdx−

∫ ∫
∂2f

∂x2
(x, y)dydy = 0.

By Proposition 2, ũ(x, y) in (14) will be harmonic (solution of Laplace’s equation) if f(x, y) is an affine
function, that is of type

f(x, y) = Ax+By +D. (15)

Substituting (15) into (14) gives the three-degree harmonic polynomial of the form

ũ(x, y) =
A

2

(
x3

3
− xy2

)
+

B

2

(
x2y − y3

3

)
+

D

2

(
x2 − y2

)
+ axy + bx+ cy + d (16)

Proposition 3. The function

ũ(x, y) =

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d

will be harmonic if and only if f(x, y) belongs to the kernel of the linear transformation

L(f)(x, y) =

∫ ∫
∂2f

∂y2
(x, y)dxdx−

∫ ∫
∂2f

∂x2
(x, y)dydy.

Moreover, if ∂2f
∂y2 − ∂2f

∂x2 = 0, then f will belong to that same kernel.

Demonstration.
(⇒) :

0 =

∫ ∫
(
∂2f

∂y2
+

∂2f

∂x2
)dxdx−

∫ ∫
(
∂2f

∂y2
+

∂2f

∂x2
)dydy = L(f)(x, y).

(⇐): Conversely, we have ∆(ũ)(x, y) = L(f)(x, y). By hypothesis, the latter is the null function. From
∂2f
∂y2 = ∂2f

∂x2 follow, by simple derivation,∫ ∫
∂2f

∂y2
(x, y)dxdx =

∫ ∫
∂2f

∂x2
(x, y)dxdx = f(x, y)

and ∫ ∫
∂2f

∂y2
(x, y)dydy =

∫ ∫
∂2f

∂x2
(x, y)dydy = f(x, y).

And, from these results L(f)(x, y) = 0.

Proposition 4. The function

H(x, y) =

∞∑
n=0

(
n∑

i=0

hi,n−ix
iyn−i

)
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is analytic harmonic if and only if exists analytic function

f(x, y) =

∞∑
n=0

(
n∑

i=0

ai,n−ix
iyn−i

)
and numbers a, b, c, d such that

H(x, y) =

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d

and f(x, y) belong to the kernel of the linear transformation

L(f)(x, y) =

∫ ∫
∂2f

∂y2
(x, y)dxdx−

∫ ∫
∂2f

∂x2
(x, y)dydy.

Demonstration. (⇒): If H(x, y) is an affine function, let’s say

H(x, y) = ax+ by + c,

let’s take f(x, y) = 0. Then

H(x, y) = ax+ by + c =

∫ ∫
0dxdx−

∫ ∫
0dydy + ax+ by + c.

Let us consider the case where H(x, y) is not an affine function. We will first prove that if f exists, then
it belongs to Ker(L) (kernel of L). Let

H(x, y) =

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d

. Then,

0 = ∆H(x, y) = ∆(

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d) = L(f)(x, y)).

Let’s prove that f(x, y) exists. We have

H(x, y) =
H(x, y)

2
+

H(x, y)

2
=

H(x, y)

2
− 1

2

∫ ∫
(−∂2H

∂y2
)(x, y)dydy.

Since, by hypothesis,

−∂2H

∂y2
(x, y) =

∂2H

∂x2
(x, y),

we have,

H(x, y) =
1

2

∫ ∫
∂2H

∂x2
(x, y)dxdx−1

2

∫ ∫
∂2H

∂x2
(x, y)dydy =

∫ ∫
1

2

∂2H

∂x2
(x, y)dxdx−

∫ ∫
1

2

∂2H

∂x2
(x, y)dydy.

So there exists f(x, y) = 1
2
∂2H
∂x2 (x, y).

(⇐):

∆H = ∆(

∫ ∫
f(x, y)dxdx−

∫ ∫
f(x, y)dydy + axy + bx+ cy + d) = L(f) = 0.

Then, H(x, y) is the harmonic analytic function.

Observation 3. In relation to Proposition 4, note that

∆H = 2a20 + 2a02 +

∞∑
n=3

(

n∑
i=0

hi,n−i(i(i− 1)xi−2yn−i + (n− i)(n− i− 1)xiyn−i−2)) (17)
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L(f)(x, y) = a02x
2 − a20y

2 +

∞∑
n=3

(

n∑
i=0

ai,n−i(
(n− i)(n− i− 1)

(i+ 2)(i+ 1)
xi+2yn−i−2 − i(i− 1)

(n− i+ 2)(n− i+ 1)
xi−2yn−i+2)) (18)

Note that, for

f(x, y) = e−xsiny, L(f)(x, y) = 0

but
∂2f

∂y2
(x, y)− ∂2f

∂x2
(x, y) = −2e−xsiny ̸= 0.

See that ∫ ∫
f(x, y)dxdx =

∫ ∫
f(x, y)dydy ⇔ ∂2f

∂y2
(x, y) =

∂2f

∂x2
(x, y).

Solving L(f)(x, y) = 0 considering f(x, y) = g(x)h(y), we get

f(x, y) = (c1e
−kx + c2e

kx + c3sinkx+ c4coskx)(d1e
−ky + d2e

ky + d3sinky + d4cosky) (19)

The same equation can be solved by taking the series

f(x, y) =
∞∑

n=0

(

n∑
i=0

ai,n−ix
iyn−1) (20)

The null polynomial of degree n obtained in L(f)(x, y) = 0 is

n−4∑
i=0

(
(n− i)(n− i− 1)

(2 + i)(1 + i)
ai,n−i −

(i+ 4)(i+ 3)

(i+ 6)(i+ 5)
ai+4,n−i−4)x

2+iyn−2−i +
2

n(n− 1)
an−2,2x

8

− 2

n(n− 1)
a2,n−2y

8 +
3× 2

(n− 1)(n− 2)
an−3,3x

n−1y − 3× 2

(n− 1)(n− 2)
a3,n−3xy

n−1 (21)

This identity provides

ai+4,n−i−4 =
(i+ 6)(i+ 5)(n− i)(n− i− 1)

(i+ 4)(i+ 3)(i+ 2)(i+ 1)
ai,n−i (22)

The entire problem is conditioned to convergences for the coefficients chosen with these restrictions. In
particular, all coefficients ai,n−i can be placed according to the coefficients of the types a0,k, a1,k; k ∈ N .
Note that on average, five-ninths of the coefficients ai,n−i are obligatorily null. And those that are not
necessarily null are all of the types a4i,4k−4ix

4iy4k−4i, a4i,4k+1−4ix
4iy4k+1−4i, a4i+1,4k−4ix

4i+1y4k−4i and
a4i+1,4k+1−4ix

4i+1y4k+1−4i, with n = 4k, 0 ≤ i ≤ k ∈ N .

5 Conclusion

Classical methods such as those presented in [5] encompass the method under study. However, this is
explicit in many situations. Furthermore, the mathematical tools needed to understand the method are
restricted to the most basic differential calculus. An approach such as the one established would be of great
encouragement for students in their first contact with the theory of partial differential equations. And to
further facilitate learning, we could develop the results initially in dimensions two and three. The linear
transformation L(f)(x, y) establishes an alternative method for the famous Laplacian operator. Analogous
situations must occur for many other operators. The analytic functions that belong to the kernel of L seem
to be simpler than the harmonic functions.
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